Answer:
2 * 2 * 113
Step-by-step explanation:
452: 2 * 226
226: 2 * 113
113 is a prime number
452: 2 * 2 * 113
452: 2^2 * 113
Answer:

Step-by-step explanation:
The number to be added is the square of half of the linear term coefficient. Such coefficient in our case is "10" (the number accompanying the variable x). Then, half of it is 10/2 = 5, and that number squared gives 25.
Therefore, the number to add on bothsides of the equality is 25, which leads to the following:
This matches answer B) of your choices.
<span>1. We analyze the limit by approaching it from both the left and the right.
From the left: f(x) = x + 10 (for x < 8), as x --> 8, f(x) --> 18
From the right: f(x) = 10 - x (for x >= 8), as x --> 8, f(x) --> 2
Since the limits on either side do not converge to the same point, the limit does not exist (this is choice C).
2. </span>Using a similar approaching as in #1:
<span><span>From the left: f(x) = 5 - x (for x < 5), as x --> 5, f(x) --> 0
At x = 5 itself: f(x) = 8
From the right: f(x) = x + 3 (for x > 5), as x --> 5, f(x) --> 8</span>
Although the value at x = 5 matches with the limit when approaching from the right, the limit when approaching from the left doesn't match, so the limit does not exist (choice D).
3. </span><span><span>From the left: f(x) = 5x - 9 (for x < 0), as x --> 0, f(x) --> -9
From the right: f(x) = |2 - x| (for x >= 0), as x --> 0, f(x) --> 2
</span>Again, since the limits when approaching from the left and right don't match, the limit does not exist. (This is Choice D).
4. lim 1/(x - 4) as x -->4-
If we are approaching x = 4 from the left, we can test values such as 3, 3.9, 3.99, 3.999, approaching 4. For x = 3, f(x) = -1. For x = 3.9, f(x) = -10. For x = 3.99, f(x) = -100. For x = 3.999, f(x) = -1000. This shows that the value continues to go towards negative infinity.
If we were to graph these 4 points on the Cartesian plane, it would also show a curve to slopes downwards to negative infinity, with the vertical asymptote at x = 4. The correct answer is Choice C) -∞ ; x = 4.
5. </span>f(x) = (x+1)(x-1) / [(x+1)(x-2)] is an example of a function with both a removable and non-removable discontinuity.
In this case, because x+1 cancels out from the numerator and denominator, it results in a hollow or missing point (removable) discontinuity at x = -1. This means that the limit still exists as x --> -1. On the other hand, x = 2 is a non-removable discontinuity, since it cannot be cancelled out, and it will be an asymptote.
Answer:
f = 3.1
Step-by-step explanation:
First you must subtract 6.4 from both sides to get -4.8f = -14.88. Divide both sides by -4.8 to get f = 3.1
Answer:
x=3
Step-by-step explanation:
7x=21
divide by 7
x=3