1.) 4 - t = 3(t - 1) - 5
4 - t = 3t - 3 - 5
4 - t = 3t - 8
3t + t = 4 + 8
4t = 12
t = 12/4 = 3
2.) 8x - 2(x + 1) = 2(3x - 1)
8x - 2x - 2 = 6x - 2
6x - 2 = 6x - 2
0 = 0
solution is identity.
3.) 3(c - 2) = 2(c - 6)
3c - 6 = 2c - 12
3c - 2c = -12 + 6
c = -6
4.) 0.5(m + 4) = 3(m - 1)
0.5m + 2 = 3m - 3
3m - 0.5m = 2 + 3
2.5m = 5
m = 5/2.5 = 2
m = 2
Answer:
Therefore the maximum number of video games that we can purchase
is 6.
Step-by-step explanation:
i) Let us say the number of video game system we can buy that costs $185
is x and the number of video games of cost $14.95 is y.
ii) The total amount we can spend on the purchase of the video game
system is $280.
iii) Now with the amount of $280 mentioned in ii) we can see that the
number of game systems that can be bought is 1.
Therefore x = 1.
Therefore the equation we can write to equate the number of video
games and video game system is given by $185 + $14.95 × y ≤ 280
Therefore 14.95 × y ≤ 280 - 185 = 95
Therefore y ≤ 95 ÷ 14.95 = 6.355
Therefore the maximum number of video games that we can purchase
is 6.
Answer:
(4, -3)
Step-by-step explanation:
Answer:
x=±√6i
Step-by-step explanation:



x=±√6i