1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gladu [14]
4 years ago
4

How long is the arc intersected by a central angle of 5pi/3 radians in a circle with a radius of 2 ft? Round your answer to the

nearest tenth. Use 3.14 for pi
A. 2.6 ft
B. 7.0 ft
C. 10.5 ft
D. 31.4 ft
Mathematics
2 answers:
Otrada [13]4 years ago
4 0
Length of an arc of a circle:
L = n / 2π ·2 ·r · π 
L = (5π/3 ·2 ·2 ·3.14 ) : 2π = 5/3 · 6.28 = 10.47 ≈ 10.5
Answer: C) 10.5 ft.
Olenka [21]4 years ago
3 0

Answer:

C


Step-by-step explanation:

The arc length formula (in radians) is:

s=r\theta

Where,

  • s is the arc length
  • r is the radius of the circle
  • \theta is the angle intercepted by the arc [in radians]

<em>It is given that radius, r=2  and angle, \theta=\frac{5\pi}{3}</em>


Substituting these values in the arc length formula gives us:

s=(2)(\frac{5\pi}{3})\\s=\frac{10\pi}{3}

Using \pi  as 3.14 and rounding to nearest tenth gives us:

s=\frac{(10)(\pi)}{3}\\s=10.5  ft

Correct answer is C.

You might be interested in
Why is the addition or subtraction of k to the output of a function considered a translation?
Nataliya [291]

Answer:

k translates a function up or down

Step-by-step explanation:

hope this helped :)

7 0
3 years ago
Find the interval(s) over which the function is increasing
anastassius [24]
The intervals refer to the x values where the function (graph) is increasing which means the y values are getting larger from left to right. Parantheses are used not brackets (parantheses means it doesn't include the value and brackets mean it does) so here the intervals would be
( negative infinity , -3)U( -3, 0 )
3 0
3 years ago
Alicia wants a pair of shoes that cost $68.48. If 17% sales tax must be added to the price, approximately
Alex787 [66]

Answer:

$80.12; approx. $80

Step-by-step explanation:

- multiply 68.48 x 17% or 68.48 x 0.17 = 11.64

- the tax is 11.64

- add 68.48 + 11.64

- her total is $80.12

- rounded it would be $80

Hope this helped!

4 0
3 years ago
500 people were surveyed and asked whether had donated food or money to local charities in the past year.  80 had donated food,
SOVA2 [1]
80 + 150 - 45= 185 (take away 45 as that was duplicated in the groups) 
185/500= 0.37
4 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Other questions:
  • What are the solutions of y = x^2-x-20?
    8·1 answer
  • 30 POINTS + BRAINLIEST!
    11·1 answer
  • 4 = 3 ?/10 what is the answer to this problem
    13·1 answer
  • Poly(3-hydroxybutyrate) (PHB), a semicrystalline polymer that is fully biodegradable and biocompatible, is obtained from renewab
    10·1 answer
  • Ms. Crest surveyed her class and found that 15 out of
    6·1 answer
  • The total distance around Dave's rectangular-shaped bedroom is 220 feet. The width of the room is 50 feet. What is the area of D
    15·1 answer
  • Write an expression for four more than three times a number.
    14·1 answer
  • There was 3/8 of a pizza left over. How much of the whole pizza get if 5 people split the left over pizza?
    8·2 answers
  • Evaluate what’s in the picture.
    5·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Cbinom%7B4a%20%2B%203%7D%7B5%7D%20%20-%20%20%5Cbinom%7B2a%20%2B%203%7D%7B3%7D%20" id="Tex
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!