1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
3 years ago
12

The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f

is concave upward or concave downward and to find the inflection points of f.

Mathematics
1 answer:
GenaCL600 [577]3 years ago
6 0

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

You might be interested in
Write the equation in slope-intercept form then change it to standard form with integer coefficients.
SCORPION-xisa [38]

Answer:

1. Slope-intercept form:   y = 2x - 4

Standard form:   2x - y = 4

2. Slope-intercept form:  y = \dfrac12x - 1

Standard form:             x - 2y = 2

3. Slope-intercept form:   y = \dfrac45x + \dfrac{21}{5}

Standard form:            4x -5y = - 21

Step-by-step explanation:

Slope intercept form:   y = mx + b

where:

  • y = y-coordinate
  • m = slope
  • x = x-coordinate
  • b = y-intercept

Standard form:  Ax + By = C

\textsf{1.  as} \ m=2: \ \ y = 2x + b

   \textsf{at} \  (6, 8): \ \ 8 = 2(6) + b

   \implies b = -4

Slope-intercept form:   y = 2x - 4

Standard form:   2x - y = 4

\textsf{2.  as} \  \ m = \dfrac12: \ \ y = \dfrac12x + b

    \textsf{at} \  (4, 1): \ \ 1 = \dfrac12(4) + b

    \implies b = -1

Slope-intercept form:  y = \dfrac12x - 1

Standard form:             x - 2y = 2

\textsf{3.  as} \  \ m = \dfrac45: \ \ y = \dfrac45x + b

   \textsf{at} \  (1,5): \ \ 5 = \dfrac45(1) + b

   \implies b = \dfrac{21}{5}

Slope-intercept form:   y = \dfrac45x + \dfrac{21}{5}

Standard form:            4x -5y = - 21

7 0
3 years ago
Helpppppp pleaseeeeee !!!!!!!!! !!!!
Sergio [31]

Given:

The function is:

f(x)=6x-3

To find:

The inverse of the given function, then draw the graphs of function and its inverse.

Solution:

We have,

f(x)=6x-3

Step 1: Substitute f(x)=y.

y=6x-3

Step 2: Interchange x and y.

x=6y-3

Step 3: Isolate variable y.

x+3=6y

\dfrac{x+3}{6}=y

Step 4: Substitute y=g(x).

\dfrac{x+3}{6}=g(x)

Therefore, the inverse of the given function is g(x)=\dfrac{x+3}{6} and the graphs of these functions are shown below.

8 0
3 years ago
Brook states that the distance on the line is 4 units. Caleb states that the whole line does not have a distance because it cont
Virty [35]

Answer:

kaleb is correct

Step-by-step explanation:

6 0
4 years ago
Read 2 more answers
What is the Mean, Median, Mode, and Range for number 3<br><br> Please help
inysia [295]

Answer:

Mean: 49

Median: 41

Mode: 45

Range: 70

Step-by-step explanation:

To find the mean: add up all the numbers, then divide by how many numbers there are.

To find the median:

Arrange your numbers in numerical order.

Count how many numbers you have.

If you have an odd number, divide by 2 and round up to get the position of the median number.

If you have an even number, divide by 2. Go to the number in that position and average it with the number in the next higher position to get the median.

To find the mode: The mode of a data set is the number that occurs most frequently in the set.

To find the range: The range is the difference between the smallest and highest numbers in a list or set. To find the range, first put all the numbers in order. Then subtract (take away) the lowest number from the highest.

8 0
3 years ago
Read 2 more answers
Cara's new car holds 13.5 gallons of gas. If gas costs $2.98 per gallon, how much would it
bezimeni [28]

Answer:

$40.23

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Please help
    10·2 answers
  • Drug abuse is defined as __________.
    14·2 answers
  • What is 157% in a Fraction
    12·2 answers
  • Find the equation of the parabola with focus (2, 3) and directrix y = -1.<br> es
    10·2 answers
  • Tina and Tracey are putting 70 things from their present lives into a few boxes, and they are going to bury the boxes so they ca
    5·2 answers
  • Which shows one way to determine the factors of x - 9x2 + 5x – 45 by grouping?
    12·1 answer
  • Simplify the expression. 8w + 5r – t + 9r
    13·1 answer
  • Find the difference: 48.23 – 9.675
    5·1 answer
  • Use the table to determine the location with the greatest amount of rainfall and the location with the least amount of rainfall.
    8·1 answer
  • Which graph shows a proportional relationship?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!