1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
2 years ago
12

The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f

is concave upward or concave downward and to find the inflection points of f.

Mathematics
1 answer:
GenaCL600 [577]2 years ago
6 0

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

You might be interested in
BRAINLIEST!!<br> 12. How can the figure be cut so that the resulting cross section is a rectangle?
maw [93]

Answer:

vertical

Step-by-step explanation:

just need yo imagine

7 0
3 years ago
Read 2 more answers
5b^x-3=7 how do we find x
V125BC [204]

Answer:

there must me a second equation too. as an equation with two variables can not be solved by just one equation

3 0
2 years ago
Solve:<br> 4 = k/7 <br> a. 24<br> b.11<br> c. 32<br> d. 28
Margarita [4]

Answer:

D. 28

Step-by-step explanation:

4 = \frac{k}{7} \\\\28 = k

8 0
3 years ago
Read 2 more answers
Find the product of these complex numbers (8+6i)(-5+7i)
spayn [35]

Answer:

Step-by-step explanation:

= -40 + 56i -30i +42i

= 68i - 40

3 0
1 year ago
If line segment BC is considered the base of triangle ABC, what is the corresponding height of the triangle?
Leni [432]

Answer:

1.6 units

Step-by-step explanation:

Coordinates of A : (-1,1)

Coordinates of B : (3,2)

Coordinates of C :( -1,-1)

Now to find the length of the sides of the triangle we will use distance formula :

d =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

To find length of AB

A = (x_1,y_1)=(-1,1)

B= (x_2,y_2)=(3,2)

Now substitute the values in the formula:

d =\sqrt{(3-(-1))^2+(2-1)^2}

d =\sqrt{(4)^2+(1)^2}

d =\sqrt{16+1}

d =\sqrt{17}

d =4.12

Now to find length of BC

B= (x_1,y_1)=(3,2)

C = (x_2,y_2)=(-1,-1)

Now substitute the values in the formula:

d =\sqrt{(-1-3)^2+(-1-2)^2}

d =\sqrt{(-4)^2+(-3)^2}

d =\sqrt{16+9}

d =\sqrt{25}

d =5

Now to find length of AC

A = (x_1,y_1)=(-1,1)

C = (x_2,y_2)=(-1,-1)

Now substitute the values in the formula:

d =\sqrt{(-1-(-1))^2+(-1-1)^2}

d =\sqrt{(0)^2+(-2)^2}

d =\sqrt{4}

d =2

Thus the sides of triangle are of length 4.12, 5 and 2

Now to find area of triangle we will use heron's formula :

To calculate the area of given triangle we will use the heron's formula :

Area = \sqrt{s(s-a)(s-b)(s-c)}

Where s = \frac{a+b+c}{2}

a,b,c are the side lengths of triangle  

a = 4.12

b=5

c=2

Substitute the values

Now substitute the values :

s = \frac{4.12+5+2}{2}

s =5.56

Area = \sqrt{5.56(5.56-4.12)(5.56-5)(5.56-2)}

Area = 3.99

Now to find the height of altitude corresponding to side BC

So, formula of area of triangle =\frac{1}{2} \times Base \times Height

Since Area = 3.99 square units

So,3.99 =\frac{1}{2} \times BC \times Height

So,3.99 =\frac{1}{2} \times 5\times Height

3.99 =2.5 \times Height

\frac{3.99}{2.5}=Height

1.596=Height

Thus the altitude corresponding to the BC is of length 1.596 unit  ≈ 1.6 units

Thus Option D is correct.

7 0
2 years ago
Read 2 more answers
Other questions:
  • Abcd is a parallelogram find ab and bx.
    12·1 answer
  • Gloria’s mother is 2.5 times as old as Gloria. Gloria is 16 how old is her mother
    10·1 answer
  • Find the distance between (-8, 4) and (-8, -2).<br>10 units<br>2 units<br>6 units<br>8 units​
    12·1 answer
  • Calculate the distance between the points!
    12·2 answers
  • - 4(5a - 3b) simplified is?
    12·2 answers
  • How do you write 24% as a fraction, mixed number, or whole number in simplest form?
    14·1 answer
  • G (r) = 25 – 3r<br> g(4) =
    11·2 answers
  • What is the length of QR
    10·2 answers
  • Escribe en lenguaje simbólico las siguientes expresiones, teniendo en cuenta que llamamos x a la edad de María. La edad que tení
    15·1 answer
  • 55 points
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!