1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
2 years ago
12

The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f

is concave upward or concave downward and to find the inflection points of f.

Mathematics
1 answer:
GenaCL600 [577]2 years ago
6 0

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

You might be interested in
The ratio of adults to children on a field trip is 2:7. If there are 14 adults on the trip, how many children are there?​
Bas_tet [7]

Answer:

49 children

Step-by-step explanation:

Adult : Child = 2 : 7

Adult = 14

2 = 14

So, 1 = 14/2 = 1 = 7 in the ratio.

So, 7 x 7 = 49 children are there.

7 0
3 years ago
Read 2 more answers
What is the answer please.... need help
mina [271]

Answer:

f\left(x\right)=x^3-6x^2+3x+10 is the function of the least degree has the real coefficients and the leading coefficients of 1 and with the zeros -1, 5, and 2.

Step-by-step explanation:

Given the function

f\left(x\right)=x^3-6x^2+3x+10

As the highest power of the x-variable is 3 with the leading coefficients of 1.

  • So, it is clear that the polynomial function of the least degree has the real coefficients and the leading coefficients of 1.

solving to get the zeros

f\left(x\right)=x^3-6x^2+3x+10

0=x^3-6x^2+3x+10              ∵  f(x)=0

as

Factor\:x^3-6x^2+3x+10\::\:\left(x+1\right)\left(x-2\right)\left(x-5\right)=0

so

\left(x+1\right)\left(x-2\right)\left(x-5\right)=0    

Using the zero factor principle

if  ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

x+1=0\quad \mathrm{or}\quad \:x-2=0\quad \mathrm{or}\quad \:x-5=0

x=-1,\:x=2,\:x=5

Therefore, the zeros of the function are:

x=-1,\:x=2,\:x=5

f\left(x\right)=x^3-6x^2+3x+10 is the function of the least degree has the real coefficients and the leading coefficients of 1 and with the zeros -1, 5, and 2.

Therefore, the last option is true.    

8 0
2 years ago
Answer needed ASAP !!!!
kumpel [21]

Answer:

The answer is C)

Step-by-step explanation:

if you graph it on desmos they are the same line.


6 0
3 years ago
Read 2 more answers
The European power to first gain a foothold in India was ___________ .
Shkiper50 [21]
D is the answer :) lol
8 0
2 years ago
Read 2 more answers
Center at the origin
Lunna [17]
The answer is:
-4x+6y=c
3 0
2 years ago
Other questions:
  • What is the area of the parallelogram?
    6·1 answer
  • The lines 6y+2=12x+4 and 4y+12=2x-8 are: a) parallel.
    10·1 answer
  • What is the distance between the points (-1, 5) and (3, 7)? Round your answer to the nearest hundredth. A. 3.46 B. 4.47 C. 10.77
    15·2 answers
  • Does anybody now Mean, mode,Range,ext? ASAP NEED HELP!!!!!!!!!
    10·1 answer
  • Cris borrowed money from her brother 6 months ago. She now owes him 56.50. She has not borrowed and she is paying 15.75 on her d
    15·1 answer
  • How do you use a number line to add integers?
    7·1 answer
  • There are 45 students in a speech contest. Yesterday, 1/3 of them gave their speeches. Today, 2/5 of the remaining students gave
    11·1 answer
  • Which of the following units are most commonly used in the United States? Check all that apply. O A. Meters O B. Ounces C. Kilog
    12·2 answers
  • A game and a controller are on sale for 45% off. The regular price of the game is $80. The regular price of the controller is $1
    6·1 answer
  • Describe how you would graph the line y=2/3x-1
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!