1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikitich [7]
3 years ago
15

The sample space of a random experiment is {a b, , c, ,} d e with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively. Let A

denote the event {abc ,,}, and let B denote the event {cde , ,}. Determine the following:a. P(A)
b. P(B)
c. P(A’)
d. P(AUB)
e. P(AnB)
Mathematics
1 answer:
nikitadnepr [17]3 years ago
7 0

Answer:

Step-by-step explanation:

The concept of intersection and union of the events is used to solve this problem. The intersection of two events is the set of sample observations formed by the common sample points from the two events. The union of two events is the set formed by taking unique observations from the sample points constituting both the events.

Complementary events: If an event A is defined, then complement of event A is not occurring of event A.

Event: The collection or the set of outcomes in an experiment is called as an event.

Complementary events: If an event A is defined, then complement of event A is not occurring of event A.

Union of two events: The set of the outcomes that belong to either the two events or any of the two events is called as union of two events. Union of two events is denoted by (OR) or (u)

Intersection of two events: The set of the outcomes that belong to both the two events is called as intersection of two events. Intersection of the two events is denoted by (AND) or (∩)

(a)

The sample space of a random experiment is,

S = \left\{ {a,b,c,d,e} \right\}

And, P\left( a \right) = 0.1,{\rm{ }}P\left( b \right) = 0.1,{\rm{ }}P\left( c \right) = 0.2,{\rm{ }}P\left( d \right) = 0.4,{\rm{ }}P\left( e \right) = 0.2

Let A be the event \left\{ {a,b,c} \right\}

Now, calculate P\left( A \right)

\begin{array}{c}\\P\left( A \right) = P\left\{ {a,b,c} \right\}\\\\ = P\left( a \right) + P\left( b \right) + P\left( c \right)\\\\ = 0.1 + 0.1 + 0.2\\\\ = 0.4\\\end{array}

The probability of event {\bf{A = }}\left\{ {{\bf{a,b,c}}} \right\}A={a,b,c} is {\bf{P}}\left( {\bf{A}} \right){\bf{ = 0}}{\bf{.4}}

​b)

The sample space of a random experiment is,

S = \left\{ {a,b,c,d,e} \right\}

And, P\left( a \right) = 0.1,{\rm{ }}P\left( b \right) = 0.1,{\rm{ }}P\left( c \right) = 0.2,{\rm{ }}P\left( d \right) = 0.4,{\rm{ }}P\left( e \right) = 0.2

Let B be the event \left\{ {c,d,e} \right\}

Now, calculate P\left( B \right)

\begin{array}{c}\\P\left( B \right) = P\left\{ {c,d,e} \right\}\\\\ = P\left( c \right) + P\left( d \right) + P\left( e \right)\\\\ = 0.2 + 0.4 + 0.2\\\\ = 0.8\\\end{array}

The probability of event {\bf{B = }}\left\{ {{\bf{c}},{\bf{d,e}}} \right\} is {\bf{P}}\left( {\bf{B}} \right){\bf{ = 0}}{\bf{.8}}

​(c)

From part (a), the probability event A is, P\left( A \right) = 0.4

Then, the probability of event A'  is,

\begin{array}{c}\\P\left( {A'} \right) = 1 - P\left( A \right)\\\\ = 1 - 0.4\\\\ = 0.6\\\end{array}

The probability of event {\bf{A'}} is {\bf{P}}\left( {{\bf{A'}}} \right){\bf{ = 0}}{\bf{.6}}

d)

The sample space of a random experiment is,

S = \left\{ {a,b,c,d,e} \right\}

And, P\left( a \right) = 0.1,{\rm{ }}P\left( b \right) = 0.1,{\rm{ }}P\left( c \right) = 0.2,{\rm{ }}P\left( d \right) = 0.4,{\rm{ }}P\left( e \right) = 0.2

Let A be the event \left\{ {a,b,c} \right\}{a,b,c} . Let B be the event \left\{ {c,d,e} \right\}

Checking the sample points in the entire sample space, find that the collection of sample points in the union of A and B.

\begin{array}{c}\\A \cup B = \left\{ {a,b,c} \right\} \cup \left\{ {c,d,e} \right\}\\\\ = \left\{ {a,b,c,d,e} \right\}\\\end{array}  

Now, calculate P\left( {A \cup B} \right)

\begin{array}{c}\\P\left( {A \cup B} \right) = P\left\{ {a,b,c,d,e} \right\}\\\\ = P\left( a \right) + P\left( b \right) + P\left( c \right) + P\left( d \right) + P\left( e \right)\\\\ = 0.1 + 0.1 + 0.2 + 0.4 + 0.2\\\\ = 1\\\end{array}

The probability of event {\bf{A}} \cup {\bf{B}} is {\bf{P}}\left( {{\bf{A}} \cup {\bf{B}}} \right){\bf{ = 1}}

(e)

The sample space of a random experiment is,

S = \left\{ {a,b,c,d,e} \right\}

And, P\left( a \right) = 0.1,{\rm{ }}P\left( b \right) = 0.1,{\rm{ }}P\left( c \right) = 0.2,{\rm{ }}P\left( d \right) = 0.4,{\rm{ }}P\left( e \right) = 0.2

Let A be the event \left\{ {a,b,c} \right\}. Let B be the event \left\{ {c,d,e} \right\}

Check the sample points in the entire sample space, to find that the collection of sample points in both events A and B.

\begin{array}{c}\\A \cap B = \left\{ {a,b,c} \right\} \cap \left\{ {c,d,e} \right\}\\\\ = \left\{ c \right\}\\\end{array}  

Now, calculate P\left( {A \cap B} \right)

\begin{array}{c}\\P\left( {A \cap B} \right) = P\left( c \right)\\\\ = 0.2\\\end{array}

The probability of event {\bf{A}} \cap {\bf{B}} is {\bf{P}}\left( {{\bf{A}} \cap {\bf{B}}} \right){\bf{ = 0}}{\bf{.2}}

You might be interested in
Suppose we have two thermometers. One thermometer is very precise but is delicate and heavy (X). We have another thermometer tha
Temka [501]

Answer:

a)H0: β1= 1 and Ha: β1 ≠1

b) The test statistic is____.t= b- β/ sb

c) The p-value is____.0.999144

(d) Therefore, we can conclude that:_____. there is not enough evidence to reject the null hypothesis.    

2) The data provides no evidence at the 0.1 significance level that these thermometers are not consistent.

Step-by-step explanation:

The null and alternate hypotheses are

H0: β1= 1 and Ha: β1 ≠1

The significance level is  alpha= 0.1 but ∝/2 =0.1/2= 0.05 for two tailed test.

The critical region at t ∝/2 (29)=  t ≤ - 1.699 , t ≥ 1.699

The test statistic is

t= b- β/ sb

which has t distribution with υ= 31-2= 29 degrees of freedom.

Calculations

Ŷ = a +bX

b = SPxy /SS x= Σ(xi-x`)(yi-y`)/Σ(xi-x`)²

b = 39671.6/39680= 0.9998

a = y` - bx`

x`= 60

y`= 59.989

a = 59.989 -0.9998*60 = 0.001734

Syx²= Σ( yi -y`)²/ n-2= 39663.3857/ 29=1367.68965

Syx= 36.9822

Sb= Syx/ √∑  (x-x`)²

Sb= 36.9823/ √39680

Sb= 36.9823/ 199.984

Sb= 0.18493

x-x`                 y-y`                    (x-x`)²     (x-x`)(y-y`)

-60                 -59.969            3600              3598.1419

-56                  -55.999           3136          3135.9458

-52                 -52.079             2704          2708.1097

-48                -47.959              2304           2302.0335

-44                 -43.899              1936          1931.5574

-40                -39.989               1600          1599.5613

-36              -36.009                1296            1296.3252

-32               -31.899              1024              1020.769

-28               -28.049             784                785.3729

-24                -23.959             576               575.0168

-20               -19.989             400                  399.7806

-16                 -15.939            256                  255.0245

-12               -12.039             144                    144.4684

-8                  -7.989             64                       63.9123  

-4                 -4.119                16                      16.4761

0                 -0.08903           0                         0

4                  3.921              16                      15.6839

8                7.961                64                       63.6877

12                12.121             144                     145.4516

16                16.031             256                   256.4955

20               20.021           400                  400.4194

24               24.111              576                   578.6632

28                28.071           784                     785.9871

32                 31.751            1024                    1016.031

36               36.031           1296                    1297.1148

40                39.961          1600                    1598.4387

44                43.881           1936                     1930.7626

48               48.021           2304                     2305.0065

52              52.001             2704                     2704.0503

56             56.051              3136                       3138.8542

<u>60            60.041                3600                     3602.4581</u>

<u>∑0          0                 39680 (SSx)     39671.6 (SPxy)</u>

Putting the values

The test statistic is

t= b- β/ sb

t= 0.9998-1/ 0.18493      ( β=1 given)

t=-0.0010815

Since the calculated t=-0.0010815  does not lie in the critical region  t ∝/2 (29)=  t ≤ - 1.699 , t ≥ 1.699 we conclude that these thermometers seem to be measure temperatures.

The p-value is  ≈ 0.999144

there is not enough evidence to reject the null hypothesis.    

7 0
3 years ago
What is the reciprocal of -11/30 in a fraction
VMariaS [17]

Answer:

30/-11

Step-by-step explanation:

u just have to flip it good luck : )

7 0
3 years ago
Read 2 more answers
Place the two numbers 42.5 and 42.35 on the number line that are greater than 42.0 and less than 43.0. Compare the two numbers o
Natali5045456 [20]
42.0 <42.35<42.5<43.0
4 0
3 years ago
Read 2 more answers
) Which expression represents the SUM of n and 12?
dolphi86 [110]
<h3>hello!</h3>

the "sum of" means we add.

So the sum of n and 12 means we add n and 12:-

n+12

or

12+n (both  of these expressions mean the same thing)

<h3>note:-</h3>

Hope everything is clear; if you need any clarification/explanation, kindly let me know, and I'll comment and/or edit my answer :)

6 0
3 years ago
Can someone please help!! (Simplifying exponential equations)
Snezhnost [94]
Seems we undistributed the ( \frac{5}{2} )^x

remember
x^{a+b}=(x^a)(x^b)
factor out ( \frac{5}{2} )^x from each term on the left side
1( \frac{5}{2} )^x+( \frac{5}{2} )^3( \frac{5}{2} )^x=A( \frac{5}{2} )^x
undistribute ( \frac{5}{2} )^x
( \frac{5}{2} )^x(1+( \frac{5}{2} )^3)=A( \frac{5}{2} )^x
divide both sides by ( \frac{5}{2} )^x
 1+( \frac{5}{2} )^3=A
6 0
4 years ago
Other questions:
  • A cat keeps eating to gain weight while a dog keeps doing exercise to lose weight.
    11·1 answer
  • What's the slope and the point on the line?
    8·2 answers
  • In a linear equation the variable is the base and the ___ is 1
    8·1 answer
  • The Black-tailed prairie dog was decimated in Arizona in the 1960s due to a disease. A large part of the population, which was a
    5·1 answer
  • Find a general solution of y" - 6y' +10y=0.
    7·1 answer
  • Seventy of Myra’s classmates are traveling by bus to a football game in another town. They hired 2 buses, but there were only 64
    7·1 answer
  • Formulating systems of equations
    15·1 answer
  • Solve the equation.
    8·1 answer
  • PLEASE HELP MEEEEEEEEEEE
    15·1 answer
  • Hanna simplified the following math statement. What did she do wrong? Show the correct answer and explain your reasoning.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!