Well, first you need to decide what place you want to round it TO.
Example: Round it to the nearest hundredth:
The next larger hundredth is 186.29 .
The next smaller hundredth is 186.28 .
Now look at it.
186.282 is closer to 186.28 than it is to 186.29 .
So the nearest hundredth is 186.28 .
-- When 186.282 is rounded to the nearest hundredth, it becomes 186.28 .
Similarly . . .
-- When 186.282 is rounded to the nearest tenth, it becomes 186.3 .
-- When 186.282 is rounded to the nearest whole number, it becomes 186 .
-- When 186.282 is rounded to the nearest ten, it becomes 190 .
-- When 186.282 is rounded to the nearest hundred, it becomes 200 .
-- When 186.282 is rounded to the nearest thousand or anything larger,
it becomes zero.
I'm curious . . . where did this number come from ?
It happens to be one thousandth of the speed of light, in miles per hour.
Did it come up in science class, or did a science geek use it for
one of the problems in math ?
Answer:
If you multiply any irrational number by the rational number zero, the result will be zero, which is rational. Any other situation, however, of a rational times an irrational will be irrational.
Adjdkdjdjwjcjdsbfbxmskxnxbs snaked can
The magnitude of the magnetic field in the central area inside the solenoid, in T is 0.0267 T
<h3>Magnetic field inside solenoid</h3>
The magnetic field inside the central area of the solenoid is given by B = μ₀ni where
- μ₀ = permeability of free space = 4π × 10⁻⁷ Tm/A,
- n = number of turns per unit length = 3,170 turns/m and
- i = current in solenoid = 6.7 A
Since B = μ₀ni
Substituting the values of the variables into the equation, we have
B = μ₀ni
B = 4π × 10⁻⁷ Tm/A × 3,170 turns/m × 6.7 A
B = 4π × 10⁻⁷ Tm/A × 21239 A-turns/m
B = 84956π × 10⁻⁷ T
B = 266897.15 × 10⁻⁷ T
B = 0.026689715 T
B ≅ 0.0267 T
So, the magnitude of the magnetic field in the central area inside the solenoid, in T is 0.0267 T
Learn more about magnetic field inside a solenoid here:
brainly.com/question/25562052