Given:
z = (x - μ)/σ = z value
x = independent variable = 11
μ = mean = 8
σ = standard deviation = 3
Solution:
X ~ N (8, 3)
For day 1, n = 5
P (X < = 11) = P (Z < = 11 – 8 / 3/Sqrt5) = P (Z <
=2.23) = 0.987126
For day 1, n = 6
P (X < = 11) = P (Z < = 11 – 8 / 3/sqrt6) = P (Z <
=2.45) = 0.992857
For both days:
P (X <= 11) = P (X <= 11) = (0.987126) (0.992857) =
0.9801
D because the insurance pays out a sum of money after death or a set period
Answer:
Option 3 - five to the two thirds power
Step-by-step explanation:
Given : Expression 'the square root of 5 times the cube root of 5'.
To find : Simplify the expression ?
Solution :
Writing expression in numeric form,
The cube root of 5 means ![\sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5%7D)
The square root of 5 times the cube root of 5 means ![\sqrt{5\sqrt[3]{5}}](https://tex.z-dn.net/?f=%5Csqrt%7B5%5Csqrt%5B3%5D%7B5%7D%7D)
Now, simplify the expression
![\sqrt{5\sqrt[3]{5}}=\sqrt{5\times (5)^{\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%7B5%5Csqrt%5B3%5D%7B5%7D%7D%3D%5Csqrt%7B5%5Ctimes%20%285%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D)
![\sqrt{5\sqrt[3]{5}}=\sqrt{(5)^{1+\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%7B5%5Csqrt%5B3%5D%7B5%7D%7D%3D%5Csqrt%7B%285%29%5E%7B1%2B%5Cfrac%7B1%7D%7B3%7D%7D%7D)
![\sqrt{5\sqrt[3]{5}}=\sqrt{(5)^{\frac{4}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%7B5%5Csqrt%5B3%5D%7B5%7D%7D%3D%5Csqrt%7B%285%29%5E%7B%5Cfrac%7B4%7D%7B3%7D%7D%7D)
![\sqrt{5\sqrt[3]{5}}=((5)^{\frac{4}{3}})^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B5%5Csqrt%5B3%5D%7B5%7D%7D%3D%28%285%29%5E%7B%5Cfrac%7B4%7D%7B3%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
![\sqrt{5\sqrt[3]{5}}=(5)^{\frac{4}{3}\times \frac{1}{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B5%5Csqrt%5B3%5D%7B5%7D%7D%3D%285%29%5E%7B%5Cfrac%7B4%7D%7B3%7D%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%7D)
![\sqrt{5\sqrt[3]{5}}=(5)^{\frac{2}{3}}](https://tex.z-dn.net/?f=%5Csqrt%7B5%5Csqrt%5B3%5D%7B5%7D%7D%3D%285%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D)
The expression is five to the two thirds power.
Therefore, Option 3 is correct.
I think it’s a I’m not really sure but I think