Answer:
Got my points deducted by a loser name PoeticAesthetics
Step-by-step explanation:
Answer:
26 is the quotient
Step-by-step explanation:
7 * 26 = 182
im not good at explaining but that's the answer
If we assume the given segments are those from the vertices to the point of intersection of the diagonals, it seems one diagonal (SW) is 20 yards long and the other (TR) is 44 yards long. The area (A) of the kite is half the product of the diagonals:
... A = (1/2)·SW·TR = (1/2)·(20 yd)·(44 yd)
... A = 440 yd²
Answer: 23 ounces
Step-by-step explanation:
To solve this you would use the pythagorean theorem since the brace is making the frame look like two right triangles. The theorem states that for a triangle with a right angle, A^2+B^2=C^2. A and B are the sides of the frame and C is the brace which is like the hypotenuse of the triangle. It doesn't matter which side is A or B so you can put 6 or 8 in place of either in the equation. 6^2+8^2=C^2. If you simplify this it equals 36+64=C^2, which then simplifies to 100=C^2. Then you take the square root of both sides (what number multiplied by itself = the number you are trying to get, in this case, 100). So then you get C=10 because 10x10=100. So the length of the diagonal brace is 10ft.