//////////////////////////
Answer:
<em>Algebra Examples</em>
<em>Algebra ExamplesThe standard form of a linear equation is Ax+By=C A x + B y = C . Move all terms containing variables to the left side of the equation. Add 4x 4 x to both sides of the equation.</em>
Answer:
(A)∠A = 82.2°,∠C = 62.8°, c = 17.1
Step-by-step explanation:
In Triangle ABC
∠B=35°
a=19
b=11
Using Law of SInes
![\dfrac{a}{\sin A} =\dfrac{b}{\sin B} \\\dfrac{19}{\sin A} =\dfrac{11}{\sin 35^\circ} \\11*\sin A=19*\sin 35^\circ\\\sin A=(19*\sin 35^\circ) \div 11\\A= \arcsin [(19*\sin 35^\circ) \div 11]\\A=82.2^\circ](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%7D%7B%5Csin%20A%7D%20%3D%5Cdfrac%7Bb%7D%7B%5Csin%20B%7D%20%5C%5C%5Cdfrac%7B19%7D%7B%5Csin%20A%7D%20%3D%5Cdfrac%7B11%7D%7B%5Csin%2035%5E%5Ccirc%7D%20%5C%5C11%2A%5Csin%20A%3D19%2A%5Csin%2035%5E%5Ccirc%5C%5C%5Csin%20A%3D%2819%2A%5Csin%2035%5E%5Ccirc%29%20%5Cdiv%2011%5C%5CA%3D%20%5Carcsin%20%5B%2819%2A%5Csin%2035%5E%5Ccirc%29%20%5Cdiv%2011%5D%5C%5CA%3D82.2%5E%5Ccirc)
Now:
![\angle A+\angle B+\angle C=180^\circ\\35^\circ+82.2^\circ+\angle C=180^\circ\\\angle C=180^\circ-[35^\circ+82.2^\circ]\\\angle C=62.8^\circ](https://tex.z-dn.net/?f=%5Cangle%20A%2B%5Cangle%20B%2B%5Cangle%20C%3D180%5E%5Ccirc%5C%5C35%5E%5Ccirc%2B82.2%5E%5Ccirc%2B%5Cangle%20C%3D180%5E%5Ccirc%5C%5C%5Cangle%20C%3D180%5E%5Ccirc-%5B35%5E%5Ccirc%2B82.2%5E%5Ccirc%5D%5C%5C%5Cangle%20C%3D62.8%5E%5Ccirc)
Using Law of Sines

Therefore:
∠A = 82.2°,∠C = 62.8°, c = 17.1
The correct option is A.
Answer:
C ≈ 22.1°
Step-by-step explanation:
The law of cosines formula is given. Solving it for C, we find ...
C = arccos((a^2 +b^2 -c^2)/(2ab))
where a and b are the sides adjacent to the angle.
Then we have ...
C = arccos((14^2 +19^2 -8^2)/(2·14·19)) = arccos(493/532)
C ≈ 22.1°
__
If you have a fair number of these to do, a spreadsheet is a useful tool. There are also triangle solver apps on the web or your local smart platform that will do this, too.
Answer: Step-by-step explanation:
y = -7x + 8
X y
-4 36
-2 22
0 8
2 -6
4 -20