f-¹(x)=
Answer:
Solution given:
f(x)=
Let f(x)=y
y=
Interchanging role of x and y
x=
doing crisscrossed multiplication
x(y+7)=-2y+2
now solve it:
xy+7x=-2y+2
keep like terms in one side
xy+2y=2-7x
take common
y(x+2)=2-7x
make a value of y
y=
So,
f-¹(x)=
Answer:
<u>m</u><u> </u><u>is</u><u> </u><u>-</u><u>2</u><u> </u><u>and</u><u> </u><u>c</u><u> </u><u>is</u><u> </u><u>-</u><u>1</u>
Step-by-step explanation:
• Let's first phrase out the general equation of a line

- m is the slope
- c is the y-intercept
[ remember that a general line equation must be in slope - intercept form as shown above ]
• from our question, we are given the equation;

• let's make y the subject in order to make the equation in slope - intercept format.
→ <em>r</em><em>e</em><em>m</em><em>e</em><em>m</em><em>b</em><em>e</em><em>r</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>p</em><em>p</em><em>l</em><em>y</em><em> </em><em>"</em><em>s</em><em>u</em><em>b</em><em>j</em><em>e</em><em>c</em><em>t</em><em> </em><em>m</em><em>a</em><em>k</em><em>i</em><em>n</em><em>g</em><em> </em><em>k</em><em>n</em><em>o</em><em>w</em><em>l</em><em>e</em><em>d</em><em>g</em><em>e</em><em>"</em>

• The above boxed equation is now a general equation. Let's extract out slope, m and y-intercept, c

Answer:

Step-by-step explanation:
The picture shows three isosceles tirangles with the same legs. The base of each triangle is 12 units, 5x-3 units and 17 units.
Since the angles at vertex of each isosceles triangles are 27°, 28° and 29°, then the lengths of the bases satisfy the double inequality
15<5x-3<17
Add 3 to this inequality
15+3<5x-3+3<17+3
18<5x<20
Divide it by 5:

Answer:
Step-by-step explanation:
Given
radius of wheel 
Time period of Wheel 
and
, where 

Let at any angle
with vertical position of a point is given by


and 
for velocity differentiate x and y to get


Height at any time t is given by
