Answer:
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Step-by-step explanation:
We have a sample of executives, of size n=160, and the proportion that prefer trucks is 26%.
We have to calculate a 95% confidence interval for the proportion.
The sample proportion is p=0.26.
The standard error of the proportion is:
The critical z-value for a 95% confidence interval is z=1.96.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:

The 95% confidence interval for the population proportion is (0.192, 0.328).
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
The answer us A.
Line AC needs to be congruent to DF because for SAS (side angle side) we have a side (BA and DE) and an angle (A and D) so we need another side.
X^2 * 5,x^4 so B is the answer
Answer:
Option D (r(t) = 3.50t +25
; r(8) = 53)
Step-by-step explanation:
The fixed cost to rent the kayak $25. This is the cost which remains fixed irrespective of the usage of the kayak. The variable cost of using the kayak is the cost which depends on the usage of the kayak. It is mentioned that the kayak is used for 4 hours and the company charges $3.5 for every half hour. The cost function is given by:
r(t) = 25 + 3.5t ; there r is the total cost of using the kayak and t is the number of half-hours the kayak is used.
4 hours means that there are 8 half-hours. Therefore, t=8. Put t=8 in r(t).
r(8) = 25 + 3.5*(8) = 25 + 28 = 53.
Therefore, Option D is the correct answer!!!