1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marissa [1.9K]
3 years ago
9

1. |-7| - 7 = ?

Mathematics
1 answer:
Papessa [141]3 years ago
7 0
The answers to the questions

You might be interested in
Geometry distance formula
viktelen [127]

A(-4, 2) and B(3, -2).

I will do number 2.

Let d(A, B) = distance between the two points.

d(A, B) = sqrt{(3 -(-4))^2 + (-2-2)^2}

d(A, B) = sqrt{(3 + 4))^2 + (-2-2)^2}

d(A, B) = sqrt{(7)^2 + (-4)^2}

d(A, B) = sqrt{49 + 16}

d(A, B) = sqrt{65}

Done!

8 0
4 years ago
The diameter of a cylindrical container is 22cm. If the volume of the container is 1331cm³, calculate its height.
lisabon 2012 [21]

Answer:

3.5cm

Step-by-step explanation:

Vol=πr²h

Transposing for h,=vol÷πr²

where r=22/2=11cm and taking π=3.142

h=1331/(3.142×(11)²)=3.5cm

6 0
1 year ago
Read 2 more answers
15.30 find the inverse laplace transform of: 1. (a) f1(s) = 6s 2 8s 3 s(s 2 2s 5) 2. (b) f2(s) = s 2 5s 6 (s 1) 2 (s 4) 3. (c) f
EleoNora [17]

The solution of the inverse Laplace transforms is mathematically given as

  • f_{1}(t)=e^{-t}\sin (2 t)
  • f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}
  • f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

<h3>What is  the inverse Laplace transform?</h3>

1)

Generally, the equation for the function is  mathematically given as

$F_{1}(s)=\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}$

By Applying the Partial fractions method

\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+5}

$6 s^{2}+8 s+3=A\left(s^{2}+2 s+5\right)+(B s+C) s$

\begin{aligned}&3=5 A \\&A=\frac{3}{5}\end{aligned}

Considers s^2 coefficient

\begin{aligned}&6=A+B \\&B=6 \cdot A \\&B=\frac{27}{5}\end{aligned}

Consider s coeffici ent

\begin{aligned}&8=2 A+C \\&C=8-2 A \\&C=\frac{34}{5}\end{aligned}

Putting these values into the previous equation

&F_{1}(s)=\frac{3}{5 s}+\frac{27 s+34}{5\left(s^{2}+2 s+5\right)} \\\\&F_{1}(s)=\frac{3}{5 s}+\frac{27(s+1)}{5\left((s+1)^{2}+4\right)}+\frac{7 \times 2}{10\left((s+1)^{2}+4\right)}

By taking Inverse Laplace Transforms

f_{1}(t)=\frac{3}{5}+\frac{27}{5} e^{-t} \cos (2t) + \frac{7}{10}\\\\

f_{1}(t)=e^{-t}\sin (2 t)

For B

$F_{2}(s)=\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}$

By Applying Partial fractions method

\begin{aligned}&\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\\\&s^{2}+5 s+6=A(s+1)(s+4)+B(s+4)+C(s+1)^{2}\end{aligned}

at s=-1

1-5+6=3 B \\\\B=\frac{2}{3}

at s=-4

&16-20+6=9 C \\\\&9 C=2 \\\\&C=\frac{2}{9}

at s^2 coefficient

1=A+C

A=1-C

A=7/9

inputting Variables into the Previous Equation

\begin{aligned}&F_{2}(s)=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\&F_{2}(s)=\frac{7}{9(s+1)}+\frac{2}{3(s+1)^{2}}+\frac{2}{9(s+4)}\end{aligned}

By taking Inverse Laplace Transforms

f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}

For C

$F_{3}(s)=\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}$

Using the strategy of Partial Fractions

\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4 s+8}

10=A\left(s^{2}+4 s+8\right)+(B s+C)(s+1)

S=-1

10=(1-4+8) A

A=10/5

A=2

Consider constants

10=8 A+C

C=10-8 A

C=10-16

C=-6

Considers s^2 coefficient

0=A+B

B=-A

B=-2

inputting Variables into the Previous Equation

&F_{3}(s)=\frac{2}{s+1}+\frac{-2 s-6}{\left((s+2)^{2}+4\right)} \\\\&F_{3}(s)=\frac{2}{s+1}-\frac{2(s+2)}{\left((s+2)^{2}+4\right)}-\frac{2}{\left((s+2)^{2}+4\right)}

Inverse Laplace Transforms

f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

Read more about Laplace Transforms

brainly.com/question/14487937

#SPJ4

3 0
2 years ago
Which of the following is equivalnt to √20
Elodia [21]
2✓5.
In decimal form, it's 4.5.
6 0
4 years ago
I don’t get this so please help me with the answer!!
kicyunya [14]

Answer:

Yes, it does represent a proportional relationship.

You can see that for every given value of x, the corresponding value of y is twice as much.  That means that the first answer is correct; the values are proportional, and the ratio is 2.

6 0
3 years ago
Other questions:
  • Eight years ago,Jose was 69 years old. How old is he now?
    6·1 answer
  • Evaluate: 2·5\4^-2 <br> A) 5\8 B<br> B) 8\5 <br> C) 40 <br> D) 160
    9·2 answers
  • 1. The lengths, in centimeters, of nine earthworms are shown below.
    5·1 answer
  • Kong took 15% fewer seconds than Nolan took to complete his multiplication timed test. Kong took 85 seconds
    8·1 answer
  • HOW DO U USE A MATH PYRAMID WITH NUMBERS
    14·2 answers
  • Solve for x given the equation square root x+9-4=1
    8·1 answer
  • Which property states that for all real numbers, x, y and z, if x = y and y = z, then x = z ?
    13·1 answer
  • Solve using an area model. 425 2 2) Katie poured 4 pitchers of lemonade. Each pitcher contained 314 liters of lemonade. How much
    10·1 answer
  • Maria walked 3 km west and 4 km south. How far is she from her starting point?
    11·1 answer
  • Find the unknown side length. Simplify radical answers.​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!