Answer:
Three proteins directly contribute to the proton gradient by moving protons across the membrane
Explanation:
The Electron transport chain is a group of proteins and molecules incrusted in the internal mitochondrial membrane and organized into four complexes, I, II, III, and IV. These complexes contain the electron transporters and the enzymes necessary to catalyze the electron transference from one complex to the other. Complex I contains the flavine mononucleotide -FMN- that receives electrons from the NADH. The coenzyme Q, located in the lipidic interior of the membrane, conducts electrons from complex I and II to complex III. The complex III contains cytochrome b, from where electrons go to cytochrome c, which is a peripheric membrane protein. Electrons travel from cytochrome c to cytochromes a and a3, located in the complex IV. Finally, they go back to the matrix, where they combine to H+ ions and oxygen, to form the water molecule. As electrons are transported through the chain, protons are bombed through three proteinic complexes from the matrix to the intermembrane space. These are complexes I, III and IV.
Well one way is how hurricane winds and such can blow birds off course. Another is how when trees fall down that forces animals to relocate.
Fewer hydrogen ions will be pumped into the Thylakoid when photosystem II being exposed to less sunlight more glucose molecules will be produced.
Photosystem II is the first membrane protein complex in oxygenic photosynthetic organisms in nature. It produces atmospheric oxygen to catalyze the photo-oxidation of water by using light energy. It oxidizes two molecules of water into one molecule of molecular oxygen.
Photosystem II the energy derived from absorption of photons is used to split water molecules to molecular oxygen and protons. The most important function of photosystem II (PSII) is its action as a water-plastoquinone oxido-reductase. At the expense of light energy, water is split, and oxygen and plastoquinol are formed.
To learn more about Photosystem II , here
brainly.com/question/13211869
#SPJ4
<span>The more thermal energy a substance has, the more warmer it will be. So when the temperature is high, there is a lot of thermal energy </span>
Thermal energy is just energy. It refers to the energy of the molecules. Temperature is just a measurement
The average distance is 16,000 km
Converging rate is 10 cm/year
1 km = 100,000 cm
= 16,000 × 100,000/10 cm/year
= 160,000,000 years
It will then take 160 Million years to collide.