Answer:
Volume = 16 unit^3
Step-by-step explanation:
Given:
- Solid lies between planes x = 0 and x = 4.
- The diagonals rum from curves y = sqrt(x) to y = -sqrt(x)
Find:
Determine the Volume bounded.
Solution:
- First we will find the projected area of the solid on the x = 0 plane.
A(x) = 0.5*(diagonal)^2
- Since the diagonal run from y = sqrt(x) to y = -sqrt(x). We have,
A(x) = 0.5*(sqrt(x) + sqrt(x) )^2
A(x) = 0.5*(4x) = 2x
- Using the Area we will integrate int the direction of x from 0 to 4 too get the volume of the solid:
V = integral(A(x)).dx
V = integral(2*x).dx
V = x^2
- Evaluate limits 0 < x < 4:
V= 16 - 0 = 16 unit^3
Answer:
The Answer is B
Ive hade this test before
To find the radius, then, we insert 18 in for the circumference. So 18=2∏r. Solving for r gives 9/∏, or approximately 2.86 inches.
Answer:
y = 18
Step-by-step explanation:
<h3><u>i</u><u>)</u><u> </u><u>redu</u><u>ce</u><u> the</u><u> fraction</u><u> </u><u>with</u><u> </u><u>4</u></h3>



<h3><u>ii</u><u>)</u><u> </u><u>simpl</u><u>ify</u><u> the</u><u> </u><u>eq</u><u>uation</u><u> </u><u>with</u><u> </u><u>cross</u><u> </u><u>multiplication</u></h3>



<h3>iii) <u>divi</u><u>de</u><u> both</u><u> sides</u><u> of</u><u> the</u><u> equation</u><u> </u><u>by</u><u> </u><u>7</u></h3>
<u>
</u>
<u>
</u>
Answer:
goes into the box
Step-by-step explanation:
Let the number be
, then

We now use the following property of exponents to simplify the left hand side of the equation.

This implies that;


Since the bases are the same, we equate the exponents to get;

We now multiply both sides by 3 to get;


Therefore the number that goes into the box is 