Csc(x) = 1/sin(x)
sec(x) = 1/cos(x)
cot(x) = [1/sin(x)] / [1/cos(x)]
cot(x) = 1/sin(x) * cos(x)/1
cot(x) = cos(x) / sin(x)
cot(x) = cot(x)
Answer:
Step-by-step explanation:
1. ABE bc the both have a right angle. plus when added together, they make a square which means they are the same.
2. id remember how to do the second one i am so sorry
Answer:
Step-by-step explanation:
An eigenvalue of n × n is a function of a scalar
considering that there is a solution (i.e. nontrivial) to an eigenvector x of Ax =
Suppose the matrix ![A = \left[\begin{array}{cc}-1&-1\\2&1\\ \end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%26-1%5C%5C2%261%5C%5C%20%5Cend%7Barray%7D%5Cright%5D)
Thus, the equation of the determinant (A -
1) = 0
This implies that:
![\left[\begin{array}{cc}-1-\lambda &-1\\2&1- \lambda\\ \end{array}\right] =0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1-%5Clambda%20%26-1%5C%5C2%261-%20%5Clambda%5C%5C%20%5Cend%7Barray%7D%5Cright%5D%20%3D0)
![-(1 - \lambda^2 ) + 2 = 0](https://tex.z-dn.net/?f=-%281%20-%20%5Clambda%5E2%20%29%20%2B%202%20%3D%200)
![-1 + \lambda ^2 + 2= 0](https://tex.z-dn.net/?f=-1%20%2B%20%5Clambda%20%5E2%20%2B%202%3D%200)
![\lambda^2 +1 =0](https://tex.z-dn.net/?f=%5Clambda%5E2%20%2B1%20%3D0)
Hence, the eigenvalues of the equation are ![\mathtt{\lambda = i , -i}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Clambda%20%3D%20i%20%2C%20-i%7D)
Also, the eigenvalues can be said to be complex numbers.
Answer:
Common factor
Factor by grouping
Factor by grouping
−
2
−
2
+
1
-x^{2}-2x+1
−x2−2x+1
−
1
(
2
+
2
−
1
)
{\color{#c92786}{-1(x^{2}+2x-1)}}
−1(x2+2x−1)
Solution−
-1(x²+ 2x-1 )
It’s brainly find answers to ur questions