Answer:
See below
Step-by-step explanation:
The number you described is the same as
where the sine of an angle is the ratio between a right triangle's opposite side to the angle and the hypotenuse. So, in this case, if we had a right triangle with a height of
units and a hypotenuse of 2 units, the ratio between the two sides will result in the value you provided. This right triangle in particular would be a 30-60-90 triangle.
In the case of a unit circle, it’s the y-coordinate of the point where a 60° angle in the standard position intersects a unit circle and a right triangle is created from that.
Answer:
d = 234.6 m
Step-by-step explanation:
You can consider a system of coordinates with its origin at the beginning of the walk of the student.
When she start to walk, she is at (0,0)m. After her first walk, her coordinates are calculated by using the information about the incline and the distance that she traveled:

she is at the coordinates (52.97 , 28.16)m.
Next, when she walks 180m to the east, her coordinates are:
(52.97+180 , 28.16)m = (232.97 , 28.16)m
To calculate the distance from the final point of the student to the starting point you use the Pythagoras generalization for the distance between two points:

The displacement of the student on her complete trajectory was of 234.6m
Answer:
the answer in 36cm squared
Step-by-step explanation:
pie r squared
Two solutions were found : x = 5; x = -2. Reformatting the input : Changes made to your input should not affect the solution: (1): "x2" was replaced by "x^2". Rearrange: Rearrange the equation bAnswer:
Step-by-step explanation:Two solutions were found : x = 5; x = -2. Reformatting the input : Changes made to your input should not affect the solution: (1): "x2" was replaced by "x^2". Rearrange: Rearrange the equation b