Answer:
Use the formula for direct variation
Step-by-step explanation:
<span>(5+2 i)(4-3i) - (5-2yi)(4-3i)
Factorize out (4 -3i)
(4 -3i)( (5 +2i) - (5 -2yi) )
= </span><span><span>(4 -3i)(5 +2i - 5 + 2yi)</span>
= </span><span><span>(4 -3i)(5 - 5 + 2i + 2yi)</span>
= (4 -3i)(2i + 2yi)
= (4 - 3i)(2 + 2y)i. Let's multiply the first two.
</span>
(4 - 3i)(2 + 2y) = 2*(4 -3i) + 2y*(4 - 3i)
= 8 - 6i + 8y - 6yi
= 8 + 8y - 6i - 6yi
(4 - 3i)(2 + 2y)i = (8 + 8y - 6i - 6yi)i Note: i² = -1
= 8i + 8yi - 6i² - 6yi²
= 8i + 8yi - 6(-1) - 6y(-1)
= 8i + 8yi + 6 + 6y
= 6 + 6y + 8i + 8yi
= (6 + 6y) + (8 + 8y)i In the form a + bi
Hello,
Please, see the attached files.
Thanks.
Answer:
????
Step-by-step explanation:
need more Info to answer correctly
Answer:
E. 10 and 10
Step-by-step explanation:
Standard Deviation is the square root of sum of square of the distance of observation from the mean.
where,
is mean of the distribution.
Here, since standard deviation is the ratio of the distance from the mean and sample size. So for decreasing the standard deviation we should keep numerator constant and increasing the denominator.
This can be only possible in option (E).
Hence, only Option (E) is correct.