Answer:
Hi! The answer is C: Bacteria! <3
Bacteria is a single celled microbe or in other words organism!
Hope this helped, if I was wrong please let me know! :3
Answer:
Explanation
Given that 36% are recessive in traits
100-36 = 64% for dominant traits considering a whole population to be 100%
P=dominant allele
q= recessive allele
P2= dominant genotype
q2= recessive genotype
according to hardyweinberg principle, p+q=1
64/100= 0.64 frequency for dominant traits or genotype, therefore
p2=0.64
then
P=√0.64
p= 0.8
Therefore, dominant allele frequency (p) for the population is 0.8
Complete question:
The endplate potential (EPP) at the frog neuromuscular junction occurs because ACh simultaneously increases the conductance of the postsynaptic membrane to Na and K
Answer:
TRUE
Explanation:
The Acetylcholine neurotransmitter is released from the presynaptic cell by the process of exocytosis.
Once the molecule is in the intercellular space, it moves forward the postsynaptic membrane to join its receptor in the motor plate.
Once the joining has occurred, the receptor acquires a channel shape allowing the ion transference that will make possible the modification of the action potential. Ions traffic will consist of the pass of sodium and calcium to the interior of the cell and potassium to the exterior. Quantitatively, the interchange Na-K is the most significant.
K+ follows a concentration gradient, while Na+ follows an electrochemical gradient. The interchange results in an increase of positive charges in the interior of the muscular cell.
Whenever there is a sufficient number of Acetylcholine receptors are active, the depolarization threshold of the motor endplate is exceeded. This activates an action potential that extends to the rest of the muscle membrane.
Lessen impacts of flooding by absorbing water and reducing the speed at which flood waters flow. Upstream wetlands can serve to store flood waters temporarily and <span>release them slowly downstream.</span>
The Rules of Protein Structure. The function of a protein is determined by its shape. The shape of a protein is determined by its primary structure (sequence of amino acids). The sequence of amino acids in a protein is determined by the sequence of nucleotides in the gene (DNA) encoding it.