Find the first three output values of the fractal-generating function f(z)=z^2-2+2i
2 answers:
we have

remember that

Step 1
<u>Find the first output value for
</u>
substitute in the fractal-generating function


Step 2
<u>Find the second output value for
</u>
substitute in the fractal-generating function


so

Step 3
<u>Find the third output value for
</u>
substitute in the fractal-generating function


so

therefore
<u>the answer is</u>
the first three output values of the fractal-generating function are
![[-2+2i,-2-6i,-34+26i]](https://tex.z-dn.net/?f=%5B-2%2B2i%2C-2-6i%2C-34%2B26i%5D)
F ( z ) = z² - 2 + 2 i1 ) z = 0:f ( 0 ) = 0² - 2 + 2 i = - 2 + 2 i2 ) f ( - 2 + 2 i ) = ( - 2 + 2 i )² - 2 + 2 i = = 4 - 8 i + 4 i² - 2 + 2 i = 4 - 8 i - 4 - 2 + 2 i = - 2 - 6 i3 ) f ( - 2 - 6 i ) = ( - 2 - 6 i )² - 2 + 2 i = 4 + 24 i + 36 i² - 2 + 2 i == 4 + 24 i - 36 - 2 + 2 i = - 34 + 26 i.
You might be interested in
Since this can’t be factored easily, you have to use synthetic division. This makes the answer x+4+(-1/x+5)
Answer:
x=9.2
Step-by-step explanation:
23/x=17.5/7
cross multiply
17.5x=161
divide
x=9.2
Hi BellaMore,
Solve -40 x (-1/8)
= 40 x 1/8
= 40 / 8
= 5
Answer:
5
Hope This Helps!
The sum of the interior angles of the polygon = (n - 2) x 180 .
(n - 2) x 180 = (n x 150)
180n - 360 = 150n
Add 360 to each side:
180n = 150n + 360
Subtract 150n from each side:
30n = 360
Divide each side by 30 :
<u>n = 12</u>
Answer:
6
4
Step-by-step explanation: