First you would find how much 35 percent of 600 is using 600/100 to find the value of one percent. One percent equals 6 pounds.
Using the vertex of a quadratic function, it is found that:
a) The revenue is maximized with 336 units.
b) The maximum revenue is of $56,448.
<h3>What is the vertex of a quadratic equation?</h3>
A quadratic equation is modeled by:

The vertex is given by:

In which:
Considering the coefficient a, we have that:
- If a < 0, the vertex is a maximum point.
- If a > 0, the vertex is a minimum point.
The demand function is given by:
p(x) = 336 - 0.5x.
Hence, the revenue function is:
R(x) = xp(x)
R(x) = -0.5x² + 336x.
Which has coefficients a = -0.5, b = 336.
Hence, the value of x that maximizes the revenue, and the maximum revenue, are given, respectively, as follows:
More can be learned about the vertex of a quadratic function at brainly.com/question/24737967
#SPJ1
Answer:
Step-by-step explanation:
Linear is C .
Quadratic is A
Exponential is B
Let present age of women and her daughter be x and y respectively.
<u>According to the questi</u>on,
Case 1 :
Two years ago,
Woman age = ( x - 2 ) years
Her daughter age = ( y - 2 ) years
Woman was 7 times old as her daughter. [ Given ]
x - 2 = 7 ( y - 2 )
=> x - 2 = 7y - 14
=> x - 2 + 14 = 7y
=> x + 12 = 7y ....( i )
Case 2 :
After Three years ,
Woman age = x + 3
Her daughter age = y + 3
she would be 4 times old as the girl. [ Given ]
x + 3 = 4 ( y + 3 )
=> x + 3 = 4y + 12
=> x = 4y + 12 - 3
=> x = 4y + 9....( ii )
Now,
★ Substituting the value of x = 4y + 9 from equation ( ii ) in equation ( i ),we get
x + 12 = 7y
=> 4y + 9 + 12 = 7y
=> 21 = 7y - 4y
=> 21 = 3y
=> 3y = 21
=> y = 21/3
=> y = 7
And,
x = 4y + 9
★ Substituting the value of y in equation ( ii ), we get
x = 4 × 7 + 9
x = 28 + 9
x = 37
Hence, the present age of women is 37 years and her daughter age is 7.
Answer:
2y+7b+11
Step-by-step explanation:
Hope this helps!!