Answer:
- L(t) = 727.775 -51.875cos(2π(t +11)/365)
- 705.93 minutes
Step-by-step explanation:
a) The midline of the function is the average of the peak values:
(675.85 +779.60)/2 = 727.725 . . . minutes
The amplitude of the function is half the difference of the peak values:
(779.60 -675.85)/2 = 51.875 . . . minutes
Since the minimum of the function is closest to the origin, we choose to use the negative cosine function as the parent function.
Where t is the number of days from 1 January, we want to shift the graph 11 units to the left, so we will use (t+11) in our function definition.
Since the period is 365 days, we will use (2π/365) as the scale factor for the argument of the cosine function.
Our formula is ...
L(t) = 727.775 -51.875cos(2π(t +11)/365)
__
b) L(55) ≈ 705.93 minutes
Answer:
Do you have picture of the line plots ?
Step-by-step explanation:
By solving a linear equation, we will see that the total cost for renting the bus is $90.
<h3>What was the total cost of renting the bus, in dollars?</h3>
Let's say that the total cost is C.
When there are 20 students, each student should pay:
p = C/20
When the other 10 students are added (for a total of 30) each student pays:
p' = C/30.
We know that the cost for each of the original 20 students decreased by $1.50, so:
p' = p - $1.50
Then we have 3 equations to work with:
p = C/20
p' = C/30.
p' = p - $1.50
Now we can replace the first and second equations into the third one:
C/30 = C/20 - $1.50
Now we can solve this linear equation for C:
C/20 - C/30 = $1.50
C*( 1/20 - 1/30) = $1.50
C*(30/600 - 20/600) = $1.50
C*(10/600) = $1.50
C*(1/60) = $1.50
C = 60*$1.50 = $90
So the total cost for renting the bus is $90.
If you want to learn more about linear equations:
brainly.com/question/1884491
#SPJ1
Answer:
3x > 37
x > 12.333
Thus, 13 and 15 satisfy
Step-by-step explanation:
hope this helps
No diagram :(
can you upload a picture so we can help out or a description? thanks!