Answer:
the mRNA goes through extensive modifications such as addition of a poly tail and a 5' cap in eukaryotes but not in prokaryotes.
Differences:
- the promoters in prokaryotes have a -35 and -10 box while in eukaryotes they are variable but have a TATA box from
- the transcription initiation site there is a single RNA polymerase in prokaryotes while eukaryotes have multiple RNA polymerases
- the sigma factor associates with the promoter region in prokaryotes but in eukaryotes there are many basal transcription factors
Explanation:
Ribosomal and transfer RNAs are processed both in prokaryotic and eukaryotic organisms. However, mRNA is only processed in eukaryotes. In eukaryotic cells, mRNA processing involves:
1. Capping at the 5' end. This process has several functions including regulation of nuclear export, prevention of eukaryotic mRNA degradation and promotion of translation.
2. Splicing in order to remove introns and conserve coding exons. Splicing helps to increase the diversity of the eukaryotic mRNAs (and therefore eukaryotic proteins)
3. Polyadenylation by the addition of a poly(A) tail at the 3' end. The poly(A) tail makes the eukaryotic mRNA molecule more stable and also prevents its degradation by exonucleases.
Answer:
Explanation:
a transform fault boundary is formed.
A trait is a characteristic, such as color or size, that is inherited by an offspring from its parents. The genes that control a trait come in pairs, one gene from each parent. We represent these gene pairs by writing a combination of two letters. For example, if one parent contributes a gene for blue eyes (c), and other parent contributes a gene for brown eyes(C), then we write the offspring’s eye color trait as Cc. This combination, of the two genes that determine the trait, is called a genotype. If gene pair contains a dominant allele, the the offspring will show this dominant trait