<em>1 Cancel m.</em>
12i=c*m/s
<em>2 Use rule a*b/c = ab/c</em>
12i=cm/s
<em>3 Multiply both sides by s.</em>
12is=cm
<em>4 Divide both sides by 12.</em>
is=cm/12
<em>5 Divide both sides by i</em>
s=cm/12/i
<em>6 Simplify cm/12/i</em>
s=sm/12i
Answer:
B because u will have to first open the bracket according to BODMAS: bracket of division multiplication addition and subtract trust me before solving something like this use this <u>BODMAS</u>
1.25=125/100=5/4......so 5/4 is the answer
![\bf \textit{parabola vertex form}\\\\ \boxed{y=a(x-{{ h}})^2+{{ k}}}\\\\ x=a(y-{{ k}})^2+{{ h}}\qquad\qquad vertex\ ({{ h}},{{ k}})\\\\ -----------------------------\\\\ y=a(x-h)^2+k\qquad \begin{cases} h=-2\\ k=-3 \end{cases}\implies y=a[x-(-2)]^2-3 \\\\\\ y=(x+2)^2-3](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%7D%5C%5C%5C%5C%0A%5Cboxed%7By%3Da%28x-%7B%7B%20h%7D%7D%29%5E2%2B%7B%7B%20k%7D%7D%7D%5C%5C%5C%5C%0Ax%3Da%28y-%7B%7B%20k%7D%7D%29%5E2%2B%7B%7B%20h%7D%7D%5Cqquad%5Cqquad%20%20vertex%5C%20%28%7B%7B%20h%7D%7D%2C%7B%7B%20k%7D%7D%29%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ay%3Da%28x-h%29%5E2%2Bk%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0Ah%3D-2%5C%5C%0Ak%3D-3%0A%5Cend%7Bcases%7D%5Cimplies%20y%3Da%5Bx-%28-2%29%5D%5E2-3%0A%5C%5C%5C%5C%5C%5C%0Ay%3D%28x%2B2%29%5E2-3)
expand the binomial, either binomial theorem, or just FOIL
bear in mind, we're assuming the coefficient "a" is 1
and we're also assuming is the first form, it could be the second, but we're assuming is a vertical parabola