Answer:
Step-by-step explanation:
x decreased by 60% = (1-0.60)x = 0.40x
x increased by 80% = (1+0.80)x = 1.80x
First simplify the rational expression by dividing. The degree in the numerator has to be at least 1 less than the degree in the denominator before you can decompose into partial fractions.
(3<em>x</em>³ - 5<em>x</em>² - 3<em>x</em> - 40) / ((<em>x</em>² + 4) (<em>x</em> - 3)) = 3 + (4<em>x</em>² - 15<em>x</em> - 4) / ((<em>x</em>² + 4) (<em>x</em> - 3))
Now decompose the remainder term into partial fractions:
(4<em>x</em>² - 15<em>x</em> - 4) / ((<em>x</em>² + 4) (<em>x</em> - 3)) = (<em>ax</em> + <em>b</em>) / (<em>x</em>² + 4) + <em>c</em> / (<em>x</em> - 3)
Multiply both sides by the denominator on the left:
4<em>x</em>² - 15<em>x</em> - 4 = (<em>ax</em> + <em>b</em>) (<em>x</em> - 3) + <em>c</em> (<em>x</em>² + 4)
Expand the right side:
4<em>x</em>² - 15<em>x</em> - 4 = <em>ax</em>² + (<em>b</em> - 3<em>a</em>) <em>x</em> - 3<em>b</em> + <em>cx</em>² + 4<em>c</em>
4<em>x</em>² - 15<em>x</em> - 4 = (<em>a</em> + <em>c</em>) <em>x</em>² + (<em>b</em> - 3<em>a</em>) <em>x</em> - 3<em>b</em> + 4<em>c</em>
Then
<em>a</em> + <em>c</em> = 4
<em>b</em> - 3<em>a</em> = -15
-3<em>b</em> + 4<em>c</em> = -4
Solve this system to get
<em>a</em> = 5, <em>b</em> = 0, <em>c</em> = -1
We end up with
(4<em>x</em>² - 15<em>x</em> - 4) / ((<em>x</em>² + 4) (<em>x</em> - 3)) = 5<em>x</em> / (<em>x</em>² + 4) - 1 / (<em>x</em> - 3)
and so
(3<em>x</em>³ - 5<em>x</em>² - 3<em>x</em> - 40) / ((<em>x</em>² + 4) (<em>x</em> - 3))
= 3 + 5<em>x</em> / (<em>x</em>² + 4) - 1 / (<em>x</em> - 3)
The answer is D
At first glance we can see the slope of the line is negative. Automatically A and C are incorrect. Slope is y/x, we go 1 space down and 5 spaces to the right. (Run over rise)
Answer:
see explanation
Step-by-step explanation:
the equation of parabola in vertex form is
y = a(x - h)² + k
where (h, k ) are the coordinates of the vertex and a is a multiplier.
here (h, k ) = (3, 1 ) , then
y = a(x - 3)² + 1
to find a substitute any other point on the graph into the equation.
using (0, 7 )
7 = a(0 - 3)² + 1 ( subtract 1 from both sides )
6 = a(- 3)² = 9a ( divide both sides by 9 )
=
= a
y =
(x - 3)² + 1 ← in vertex form
------------------------------------------------------
the equation of a parabola in factored form is
y = a(x - a)(x - b)
where a, b are the zeros and a is a multiplier
here zeros are - 1 and 3 , the factors are
(x - (- 1) ) and (x - 3), that is (x + 1) and (x - 3)
y = a(x + 1)(x - 3)
to find a substitute any other point that lies on the graph into the equation.
using (0, - 3 )
- 3 = a(0 + 1)(0 - 3) = a(1)(- 3) = - 3a ( divide both sides by - 3 )
1 = a
y = (x + 1)(x - 3) ← in factored form