Given the table below representing the number of hours of television nine Math II class students watched the night before a big test on
triangles
along with the grades they each earned on that test.
![\begin{center} \begin{tabular} {|c|c|} Hours Spent Watching TV & Grade on Test (out of 100) \\ [1ex] 4 & 71 \\ 2 & 81 \\ 4 & 62 \\ 1 & 86 \\ 3 & 77 \\ 1 & 93 \\ 2 & 84 \\ 3 & 80 \\ 2 & 85 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%0A%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AHours%20Spent%20Watching%20TV%20%26%20Grade%20on%20Test%20%28out%20of%20100%29%20%20%5C%5C%20%5B1ex%5D%0A4%20%26%2071%20%5C%5C%20%0A2%20%26%2081%20%5C%5C%20%0A4%20%26%2062%20%5C%5C%20%0A1%20%26%2086%20%5C%5C%20%0A3%20%26%2077%20%5C%5C%20%0A1%20%26%2093%20%5C%5C%20%0A2%20%26%2084%20%5C%5C%20%0A3%20%26%2080%20%5C%5C%20%0A2%20%26%2085%0A%5Cend%7Btabular%7D%0A%5Cend%7Bcenter%7D)
Let the number the number of hours of television each of the students watched the night before the test be x while the grades they each earned on that test be y.
We use the following table to find the equation of the line of best fit of the regression analysis of the data.
![\begin{center} \begin{tabular} {|c|c|c|c|} x & y & x^2 & xy \\ [1ex] 4 & 71 & 16 & 284 \\ 2 & 81 & 4 & 162 \\ 4 & 62 & 16 & 248 \\ 1 & 86 & 1 & 86 \\ 3 & 77 & 9 & 231 \\ 1 & 93 & 1 & 93 \\ 2 & 84 & 4 & 168 \\ 3 & 80 & 9 & 240 \\ 2 & 85 & 4 & 170 \\ [1ex]\Sigma x=22 & \Sigma y=719 & \Sigma x^2=64 & \Sigma xy=1,682 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%20%5Cbegin%7Btabular%7D%20%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%20x%20%26%20y%20%26%20x%5E2%20%26%20xy%20%5C%5C%20%5B1ex%5D%204%20%26%2071%20%26%2016%20%26%20284%20%5C%5C%202%20%26%2081%20%26%204%20%26%20162%20%5C%5C%204%20%26%2062%20%26%2016%20%26%20248%20%5C%5C%201%20%26%2086%20%26%201%20%26%2086%20%5C%5C%203%20%26%2077%20%26%209%20%26%20231%20%5C%5C%201%20%26%2093%20%26%201%20%26%2093%20%5C%5C%202%20%26%2084%20%26%204%20%26%20168%20%5C%5C%203%20%26%2080%20%26%209%20%26%20240%20%5C%5C%202%20%26%2085%20%26%204%20%26%20170%20%5C%5C%20%5B1ex%5D%5CSigma%20x%3D22%20%26%20%5CSigma%20y%3D719%20%26%20%5CSigma%20x%5E2%3D64%20%26%20%5CSigma%20xy%3D1%2C682%20%5Cend%7Btabular%7D%20%5Cend%7Bcenter%7D)
Recall that the equation of the line of best fit of a regression analysis is given by
![y=a+bx](https://tex.z-dn.net/?f=y%3Da%2Bbx)
where:
![a= \frac{(\Sigma y)(\Sigma x^2)-(\Sigma x)(\Sigma xy)}{n(\Sigma x^2)-(\Sigma x)^2}](https://tex.z-dn.net/?f=a%3D%20%5Cfrac%7B%28%5CSigma%20y%29%28%5CSigma%20x%5E2%29-%28%5CSigma%20x%29%28%5CSigma%20xy%29%7D%7Bn%28%5CSigma%20x%5E2%29-%28%5CSigma%20x%29%5E2%7D%20)
and
![b= \frac{n(\Sigma xy)-(\Sigma x)(\Sigma y)}{n(\Sigma x^2)-(\Sigma x)^2}](https://tex.z-dn.net/?f=b%3D%20%5Cfrac%7Bn%28%5CSigma%20xy%29-%28%5CSigma%20x%29%28%5CSigma%20y%29%7D%7Bn%28%5CSigma%20x%5E2%29-%28%5CSigma%20x%29%5E2%7D%20)
![y=\frac{(719)(64)-(22)(1,682)}{9(64)-(22)^2}+\frac{9(1,682)-(22)(719)}{9(64)-(22)^2}x \\ \\ = \frac{46,016-37,004}{576-484} + \frac{15,138-15,818}{576-484} x \\ \\ = \frac{9,012}{92} + \frac{-680}{92} x \\ \\ =97.95-7.391x](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B%28719%29%2864%29-%2822%29%281%2C682%29%7D%7B9%2864%29-%2822%29%5E2%7D%2B%5Cfrac%7B9%281%2C682%29-%2822%29%28719%29%7D%7B9%2864%29-%2822%29%5E2%7Dx%20%5C%5C%20%20%5C%5C%20%3D%20%5Cfrac%7B46%2C016-37%2C004%7D%7B576-484%7D%20%2B%20%5Cfrac%7B15%2C138-15%2C818%7D%7B576-484%7D%20x%20%5C%5C%20%20%5C%5C%20%3D%20%5Cfrac%7B9%2C012%7D%7B92%7D%20%2B%20%5Cfrac%7B-680%7D%7B92%7D%20x%20%5C%5C%20%20%5C%5C%20%3D97.95-7.391x)
Thus, the equation of the line of best fit is given by y = 97.95 - 7.391x
<span>A student that watched 1.5 hours of TV will have a score given by
y = 97.95 - 7.391(1.5) = 97.95 - 11.0865 = 86.8635
Therefore, </span><span>a student’s score if he/she watched 1.5 hours of TV to the nearest whole number is 87.</span>
Answer:
Okay I can help you to do your homework.
Based on the definition of integers, ordering them would depend on if they are negative, positive, or have a zero value.
<h3>How are integers ordered?</h3><h3 />
Integers are whole numbers such as 1, 15, and 55. There are no decimals and they do not come in the form of fractions.
Integers can be negative or positive. Positive integers are always higher than negative integers. For instance, 1 is more than -500,000.
If both integers are negative, the larger looking number is considered smaller. For instance, -5 is more than -55. For positive integers, this is the reverse with larger looking numbers being larger.
An example of the correct order of intergers based on this dataset (1, 52, -800, 86, 5, and -4) is:
= -800, -4, 1, 5, 52, 86
Find out more on ordering integers at brainly.com/question/12399107.
#SPJ1
So here is the answer. Given that both Eric and Mark got a hamburger which is $4 each. Mark got a lemonade and some cotton candy which costs $5.
So this gives them a total of $4, $4, $5, $?(lemonade). Partial sum is $13 without the lemonade. Since Eric got a $2, the total bill was deducted with $2 and the rest of the amount is $14.50. Therefore, the total bill would have been $16.50. So $16.50 minus $13 (partial sum) is $3.50. So the lemonade costs $3.50. Hope this helps.
D=51/77
First set up the equation equal to zero(0), the distribute from there.