The numerical value of the mean voltage is 25.47 V
To find the numerical value of the mean voltage, V of V(t) = 40 sin(t), we integrate V(t) with respect to t over the interval [0.π]
So,
![V = \frac{1}{\pi } \int\limits^\pi _0 {V(t)} \, dt \\V = \frac{1}{\pi } \int\limits^\pi _0 {40sint} \, dt \\V = \frac{1}{\pi } [-40cost]_{0}{\pi } \\V = \frac{1}{\pi } -[40cos\pi - 40cos0]\\\\V = \frac{1}{\pi } (-[40 X (-1) - 40 X 1})\\V = -\frac{1}{\pi } [-40 - 40]\\V = \frac{80}{\pi } \\V = 25.465 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5Cint%5Climits%5E%5Cpi%20_0%20%7BV%28t%29%7D%20%5C%2C%20dt%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5Cint%5Climits%5E%5Cpi%20_0%20%7B40sint%7D%20%5C%2C%20dt%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5B-40cost%5D_%7B0%7D%7B%5Cpi%20%7D%20%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20-%5B40cos%5Cpi%20%20-%2040cos0%5D%5C%5C%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%28-%5B40%20X%20%28-1%29%20-%2040%20X%201%7D%29%5C%5CV%20%3D%20-%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5B-40%20-%2040%5D%5C%5CV%20%3D%20%5Cfrac%7B80%7D%7B%5Cpi%20%7D%20%5C%5CV%20%3D%2025.465%20V)
V ≅ 25.47 V
So, the numerical value of the mean voltage is 25.47 V
Learn more about mean volatage here:
brainly.com/question/17928028
You would have to use the quadratic formula because it’s not a perfect square
Answer:
C. 55°
Step-by-step explanation:
Note the total measurement of angles for a triangle. The total measurement of all angles in a triangle = 180°
Note that m∠C is a right angle (as shown through the square), and that right angles = 90°
Subtract to find the measurement of the unknown angle (∠B)
∠B = 180 - (∠A + ∠C)
∠B = 180 - (35 + 90)
Simplify. Combine like terms. First, add (solve parenthesis), then subtract.
∠B = 180 - (125)
∠B = 55
m∠B = C. 55°
~
I^2 = (sqrt-1)^2 then the square cancels out so the answer is just
-1
Answer:
20
Step-by-step explanation:
you've got to do the inside parenthesis first then multiple with 3 and finally add 8