Answer:
The probability that there are 3 or less errors in 100 pages is 0.648.
Step-by-step explanation:
In the information supplied in the question it is mentioned that the errors in a textbook follow a Poisson distribution.
For the given Poisson distribution the mean is p = 0.03 errors per page.
We have to find the probability that there are three or less errors in n = 100 pages.
Let us denote the number of errors in the book by the variable x.
Since there are on an average 0.03 errors per page we can say that
the expected value is,
= E(x)
= n × p
= 100 × 0.03
= 3
Therefore the we find the probability that there are 3 or less errors on the page as
P( X ≤ 3) = P(X = 0) + P(X = 1) + P(X=2) + P(X=3)
Using the formula for Poisson distribution for P(x = X ) = 
Therefore P( X ≤ 3) = 
= 0.05 + 0.15 + 0.224 + 0.224
= 0.648
The probability that there are 3 or less errors in 100 pages is 0.648.
Answer:
f(x) is y so the x=16 because 4*4=16
Answer: x=3/2
Step-by-step explanation:
Multiply the parentheses by 2/3. 9=2/3x+8.
Multiply both sides by 3 . 27=2x+24
Move the term. When moved to the left side it changes from positive to a negative. -2x=24-27.
-2x=-3
Divide both sides by -2
x=3/2 (x=1 1/2, x=1.5)
The area of the triangle is 49 in2, so she can create only 2 triangles.
Answer:
Explanation:
Number the sides of the decagon: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, from top (currently red) clockwise.
- The side number one can be colored of five different colors (red, orange, blue, green, or yellow): 5
- The side number two can be colored with four different colors: 4
- The side number three can be colored with three different colors: 3
- The side number four can be colored with two different colors: 2
- The side number five can be colored with the only color left: 1
- Each of the sides six through ten can be colored with one color, the same as its opposite side: 1
Thus, by the multiplication or fundamental principle of counting, the number of different ways to color the decagon will be:
- 5 × 4 × 3 × 2 ×1 × 1 × 1 × 1 × 1 × 1 = 120.
Notice that numbering the sides starting from other than the top side is a rotation of the decagon, which would lead to identical coloring decagons, not adding a new way to the number of ways to color the sides of the figure.