Your max amount for this is $20. Let's say x represents the number of gallons.
20 ≥ 3.2x
x = 6.25 gallons
If they're asking for integers or whole numbers, you'd round down to 6 because you only have enough money for 6 full gallons. If you rounded up to 7, you wouldn't be able to fill it up completely because then you'd be over your $20.00 budget for gas.
Try B...because the points meet at a intersection
Two lines are perpendicular if and only if the product of their slopes is - 1.
So, you just need to find the slope of each line and find out the product of their slopes.
I will do one example for you.
L1: y = 3x + 5
L2: y = - 3x + 14
L3: y = -x/3 + 14
The slope of a line is the coefficient of the x.
So the slopes are:
L1: slope 3
L2: slope -3
L3: slope -1/3
So now multiply the slopes of each pair of lines:
L1 and L2: 3 * (-3) = - 9 => No, they are not perpendicular
L2 and L3: (-3) * (-1/3) = 1 => No, they are not perpendicular
L1 and L3: (3) * (-1/3) = -1 => Yes, they are penpendicular.
Answer:

Step-by-step explanation:
Let
y ----> the distance in miles
x ----> the time in hours
using proportion

Simplify


This is a linear direct variation
The unit rate or speed is the slope of the linear equation
The unit rate is 4 miles/hour
Answer: First of all, we will add the options.
A. Yes, because 3 inches falls above the maximum value of lengths in the sample.
B. Yes, because the regression equation is based on a random sample.
C. Yes, because the association between length and weight is positive.
D. No, because 3 inches falls above the maximum value of lengths in the sample.
E. No, because there may not be any 3-inch fish of this species in the pond.
The correct option is D.
Step-by-step explanation: It would not be appropriate to use the model to predict the weight of species that is 3 inches long because 3 inches falls above the maximum value of lengths in the sample.
As we can see from the question, the model only accounts for species that are within the range of 0.75 to 1.35 inches in length, and species smaller or larger than that length have not been taken into consideration. Therefore the model can not be used to predict the weights of fishes not with the range accounted for.