Answer:
the equation in slope intercept is y = -4.
ot your points and it is a straight line across..no slope.
Answer:

Step-by-step explanation:
First, the problem asks for an expression; this means that there should be no equal sign. Also, the keyword "product" means that both the terms must be multiplied. So,
is the final expression; this equals 96.
Answer:
10,995.6 ft^3.
2300.3 gallons.
(both to the nearest tenth).
Step-by-step explanation:
Area of the surface of the river = area of the outer circle - area of the inner circle.
Radius of the outer circle = 30 *3 = 90 feet.
So the surface area of the river = π(90)^2 - π(85)^2
= 875π ft^2
Also the volume of the river = surface area * depth = 875π*4 = 3500π ft^3
= 10,995.6 ft^3.
Number of gallons of water it will hold = 10,995.6 / 4.78
= 2300.3 gallons.
In this question it basically wants you to leave Y alone in a side of the equation.
In this case,
For 3y=c

For Ay=w

For Y/c=w
Y=cw
For y/a=2c
y=2ac
For a=y+p
y=a-p
For C=y-k
y=C+k
Using the <u>normal distribution and the central limit theorem</u>, it is found that there is a 0.0166 = 1.66% probability of a sample proportion of 0.59 or less.
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sampling proportions of a proportion p in a sample of size n has mean
and standard error 
In this problem:
- 1,190 adults were asked, hence

- In fact 62% of all adults favor balancing the budget over cutting taxes, hence
.
The mean and the standard error are given by:


The probability of a sample proportion of 0.59 or less is the <u>p-value of Z when X = 0.59</u>, hence:

By the Central Limit Theorem



has a p-value of 0.0166.
0.0166 = 1.66% probability of a sample proportion of 0.59 or less.
You can learn more about the <u>normal distribution and the central limit theorem</u> at brainly.com/question/24663213