Explanation:
The polar nature of the membrane’s surface can attract polar molecules, where they can later be transported through various mechanisms. Also, the non-polar region of the membrane allows for the movement of small non-polar molecules across the membrane’s interior, while preventing the movement of polar molecules, thus maintaining the cell’s composition of solutes and other substances by limiting their movement.
Further explanation:
Lipids are composed of fatty acids which form the hydrophobic tail and glycerol which forms the hydrophilic head; glycerol is a 3-Carbon alcohol which is water soluble, while the fatty acid tail is a long chain hydrocarbon (hydrogens attached to a carbon backbone) with up to 36 carbons. Their polarity or arrangement can give these non-polar macromolecules hydrophilic and hydrophobic properties i.e. they are amphiphilic. Via diffusion, small water molecules can move across the phospholipid bilayer acts as a semi-permeable membrane into the extracellular fluid or the cytoplasm which are both hydrophilic and contain large concentrations of polar water molecules or other water-soluble compounds.
Similarly via osmosis, the water passes through the membrane due to the difference in osmotic pressure on either side of the phospholipid bilayer, this means that the water moves from regions of high osmotic pressure/concentration to regions of low pressure/ concentration to a steady state.
Transmembrane proteins are embedded within the membrane from the extracellular fluid to the cytoplasm, and are sometimes attached to glycoproteins (proteins attached to carbohydrates) which function as cell surface markers. Carrier proteins and channel proteins are the two major classes of membrane transport proteins; these allow large molecules called solutes (including essential biomolecules) to cross the membrane.
Learn more about membrane components at brainly.com/question/1971706
Learn more about plasma membrane transport at brainly.com/question/11410881
#LearnWithBrainly
Answer:
Explanation:
Due to the Sun's massive size, its large gravitational pull causes the planets and other objects in the solar system to orbit around it. In orbit around the Sun are the eight planets along with their moons, dwarf planets and many much smaller objects like asteroids and comets.
To activate means to start, and activation energy starts the reaction, which means activators start the reaction.
Answer: <span>Activators</span>
They have no soft tissues in there body.Ignore my answer it wrong.
Answer and Explanation:
The regular synthetic denaturant of proteins is urea. The high grouping of urea causes unfolding of protein and accordingly brings about loss of capacity of protein. The urea communicates with the protein and counteracts collapsing of protein.
During oxidation, the disufide bonds that are required for legitimate working and adjustment of protein are shaped, while in nearness of urea, the disulfide bonds are not situated effectively. The protein oxidation brings about covalent adjustment of protein that outcomes in change of physical and substance properties of protein.
The difference in physical and chemical properties of protein after oxidation and in nearness of urea can't be altered even after expulsion of urea. Along these lines, protein doesn't crease appropriately.