Answer:
A quadratic function is one of the form f(x) = ax2 + bx + c, where a, b, and c are numbers with a not equal to zero.
Step-by-step explanation:
We have proven that the trigonometric identity [(tan θ)/(1 - cot θ)] + [(cot θ)/(1 - tan θ)] equals 1 + (secθ * cosec θ)
<h3>How to solve Trigonometric Identities?</h3>
We want to prove the trigonometric identity;
[(tan θ)/(1 - cot θ)] + [(cot θ)/(1 - tan θ)] = 1 + sec θ
The left hand side can be expressed as;
[(tan θ)/(1 - (1/tan θ)] + [(1/tan θ)/(1 - tan θ)]
⇒ [tan²θ/(tanθ - 1)] - [1/(tan θ(tanθ - 1)]
Taking the LCM and multiplying gives;
(tan³θ - 1)/(tanθ(tanθ - 1))
This can also be expressed as;
(tan³θ - 1³)/(tanθ(tanθ - 1))
By expansion of algebra this gives;
[(tanθ - 1)(tan²θ + tanθ.1 + 1²)]/[tanθ(tanθ(tanθ - 1))]
Solving Further gives;
(sec²θ + tanθ)/tanθ
⇒ sec²θ * cotθ + 1
⇒ (1/cos²θ * cos θ/sin θ) + 1
⇒ (1/cos θ * 1/sin θ) + 1
⇒ 1 + (secθ * cosec θ)
Read more about Trigonometric Identities at; brainly.com/question/7331447
#SPJ1
Answer:
Step-by-step explanation:
uhh
Answer:
x=95
Step-by-step explanation:
First, we can simplify the equation. 10c-760=190. We can +760 on both sides. 10c=950. We can do 950/10=95.
Let the two sides of a right triangle be equal to one, which means that the hypotenuse is √2
Since cosa=adjacent side / hypotenuse
cos45=1/√2
We can rationalize the denominator by multiplying numerator and denominator by √2
√(2)/2
or if you prefer: √(1/2)