1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
3 years ago
15

A positive and negative charge will attract each

Mathematics
1 answer:
LuckyWell [14K]3 years ago
8 0
In contrast to the attractive force between two objects with opposite charges, two objects that are of like charge will repel each other. That is, a positively charged object will exert a repulsive force upon a second positively charged object. ... Objects with like charge repel each other.
You might be interested in
(3x − 4)(2x)2 + 2x − 1).
zzz [600]
<span><span><span><span><span>(<span><span>3x</span>−4</span>)</span><span>(<span>2x</span>)</span></span><span>(2)</span></span>+<span>2x</span></span>−1

</span>Distribute:

<span>=<span><span><span><span><span><span>12<span>x2</span></span>+</span>−<span>16x</span></span>+<span>2x</span></span>+</span>−1

</span></span>Combine Like Terms:

<span>=<span><span><span><span>12<span>x2</span></span>+<span>−<span>16x</span></span></span>+<span>2x</span></span>+<span>−1</span></span></span><span>=<span><span><span>(<span>12<span>x2</span></span>)</span>+<span>(<span><span>−<span>16x</span></span>+<span>2x</span></span>)</span></span>+<span>(<span>−1</span>)</span></span></span><span>=<span><span><span>12<span>x2</span></span>+<span>−<span>14x</span></span></span>+<span>−1

</span></span></span>Answer:<span>=<span><span><span>12<span>x2</span></span>−<span>14x</span></span>−<span>1

hope this helps! was there meant to be a parenthesis by the 2 + 2x - 1??  </span></span></span>
4 0
3 years ago
Gio is solving the quadratic equation by completing the square. 5x2 + 15x – 4 = 0. What should Gio do first
Vaselesa [24]
We observe that we have a polynomial of the form:
 ax2 + bx + c
 Therefore, to complete the square, we must use the following formula:
 a (x + (b / 2a)) ^ 2 + c - (b ^ 2 / 4a)
 Thus,
 Step 1: 
 We define:
 a = 5
 b = 15
 c = -4
 Step 2: 
 we use the formula:
 5 (x + (15 / (2 * 5))) ^ 2 + (-4) - ((15) ^ 2 / (4 * 5))
 5 (x + (15 / (2 * 5))) ^ 2 - 15.25
 5 (x + 1.5) ^ 2 - 15.25

 5 (x + 3/2) ^ 2 - 61/4

 Answer:
 Gio should do first: 
 a (x + (b / 2a)) ^ 2 + c - (b ^ 2 / 4a)
 a = 5
 b = 15 
 c = -4
4 0
3 years ago
Read 2 more answers
The block factory has boxes to pack groups of one hundred books if maks has an order for 2,340 blocks how can he pack them using
SpyIntel [72]
He will use 24 boxes
4 0
3 years ago
Read 2 more answers
It is known that there only is 1% chance of getting a disease. a test is being devised to detect the disease. the probability th
Cerrena [4.2K]
Suppose D is the event that a given patient has the disease, and P is the event of a positive test result.

We're given that

\mathbb P(D)=0.01
\mathbb P(P\mid D)=0.98
\mathbb P(P^C\mid D^C)=0.95

where A^C denotes the complement of an event A.

a. We want to find \mathbb P(P^C). By the law of total probability, we have

\mathbb P(P^C)=\mathbb P(P^C\cap D)+\mathbb P(P^C\cap D^C)

That is, in order for P^C to occur, it must be the case that either D also occurs, or D^C does. Then from the definition of conditional probability we expand this as

\mathbb P(P^C)=\mathbb P(D)\mathbb P(P^C\mid D)+\mathbb P(D^C)\mathbb P(P^C\mid D^C)

so we get

\mathbb P(P^C)=0.01\cdot0.02+0.99\cdot0.95=0.9407

b. We want to find \mathbb P(D\mid P). Now, we can use Bayes' rule, but if you're like me and you find the formula a bit harder to remember, we can easily derive it.

By the definition of conditional probability,

\mathbb P(D\mid P)=\dfrac{\mathbb P(D\cap P)}{\mathbb P(P)}

We have the probabilities of P/P^C occurring given that D/D^C occurs, but not vice versa. However, we can expand the probability in the numerator to get a probability in terms of P being conditioned on D:

\mathbb P(D\cap P)=\mathbb P(D)\mathbb P(P\mid D)

Meanwhile, the law of total probability lets us rewrite the denominator as

\mathbb P(P)=\mathbb P(P\cap D)+\mathbb P(P\cap D^C)

or in terms of conditional probabilities,

\mathbb P(P)=\mathbb P(D)\mathbb P(P\mid D)+\mathbb P(D^C)\mathbb P(P\mid D^C)

so that

\mathbb P(D\mid P)=\dfrac{\mathbb P(D)\mathbb P(P\mid D)}{\mathbb P(D)\mathbb P(P\mid D)+\mathbb P(D^C)\mathbb P(P\mid D^C)}

which is exactly what Bayes' rule states. So we get

\mathbb P(D\mid P)=\dfrac{0.01\cdot0.98}{0.01\cdot0.98+0.99\cdot0.05}\approx0.1653
6 0
3 years ago
10 pts <br><br><br> Match the word to its definition or symbol.
earnstyle [38]

Answer:

1. Element

2.empty set

3.subset

4.infinite set

5.null set

6.finite set

7.not an element

Step-by-step explanation:

3 0
4 years ago
Other questions:
  • A toy company produces 1,000 toys per month. In January, 75 toys did not meet quality standards. The toy company generates a ran
    13·1 answer
  • For what value of g does the function f(g) =g^2 + 3g equal 18
    12·2 answers
  • When you have a division problem, what do you do to the exponents?
    11·1 answer
  • The graph of an equation with a negative discriminant always has which characteristic? no x-intercept no y-intercept no max no m
    7·2 answers
  • The area of a rectangular garage is 32 square meters. the perimeter is 24 meters. what are the dimensions of the garage?
    11·1 answer
  • Trees planted by a landscaping firm have a 90% one-year survival rate, If they plant 16 trees in a park, what is the following p
    13·1 answer
  • Help me out please an thank you
    12·1 answer
  • Please, please help me!
    13·2 answers
  • GIVING OUT BRAINLIEST TO WHOEVER CAN PROVIDE THE CORRECT ANSWER !! Asap
    7·1 answer
  • Mary Sweet works in a pizza store where busiest days fall on the weekend.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!