Answer:
The chosen topic is not meant for use with this type of problem. Try the examples below.
2x+1 , 3x+9
x3+x2+1 , x2+2x−6
x4+x , −x+6
Step-by-step explanation:
hope this helps
Use: 0, 4, 6, 11, 9, 8, 9, 1, 5, 9, 7 to construct a box-and-whisker plot. List the maximum, minimum, and quartiles
gulaghasi [49]
Answer:
Step-by-step explanation:
<h3>Given</h3>
- 0, 4, 6, 11, 9, 8, 9, 1, 5, 9, 7
<h3>To find</h3>
- List 5 points of box and whisker plot
<h3>Solution</h3>
<u>Step 1</u>
<u>Putting the data in the order from smallest to greatest:</u>
- 0, 1, 4, 5, 6, 7, 8, 9, 9, 9, 11
<u>Step 2</u>
- The minimum and maximum = 0 and 11
- Medium quartile is the middle number ⇒ Q2 = 7
- First quartile = middle of the lower part ⇒ Q1 = 4
- Third quartile = middle of the highest part ⇒ Q3 = 9
<u>So the 5 numbers are:</u>
Answer:
<em>T</em><em>h</em><em>e</em><em> </em><em>c</em><em>o</em><em>r</em><em>r</em><em>e</em><em>c</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>s</em>
<em>For addition, Caulleen used the words total, sum, altogether, and increase. But we could also have used the words combine, plus, more than, or even just the word "and". For subtraction, Caulleen used the words, fewer than, decrease, take away, and subtract. We also could have used less than, minus, and difference.</em>
Step-by-step explanation:
<em><u>h</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>h</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u>s</u></em><em><u> </u></em><em><u>u</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em>
Answer:
42
Step-by-step explanation:
We know that 10x + 6y = 7, and so
6(10x + 6y) = 6(7) = 42
Answer:In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line. The adjective real in this context was introduced in the 17th century by René Descartes, who distinguished between real and imaginary roots of polynomials
Step-by-step explanation: