1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexus [3.1K]
2 years ago
8

At Levi's restaurant and bakery, each cake is cut into 16 pieces.

Mathematics
1 answer:
Vikentia [17]2 years ago
5 0
Answer
C = 16 (16c)
P = cake
Explanation
there are 16 pieces of cake and is spilt and says let C represent the amount of cakes and P represent cake
You might be interested in
Suppose that the length of a side of a cube X is uniformly distributed in the interval 9
Nastasia [14]

Answer:

f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.

Step-by-step explanation:

Given

9 < x < 10 --- interval

Required

The probability density of the volume of the cube

The volume of a cube is:

v = x^3

For a uniform distribution, we have:

x \to U(a,b)

and

f(x) = \left \{ {{\frac{1}{b-a}\ a \le x \le b} \atop {0\ elsewhere}} \right.

9 < x < 10 implies that:

(a,b) = (9,10)

So, we have:

f(x) = \left \{ {{\frac{1}{10-9}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.

Solve

f(x) = \left \{ {{\frac{1}{1}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.

f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.

Recall that:

v = x^3

Make x the subject

x = v^\frac{1}{3}

So, the cumulative density is:

F(x) = P(x < v^\frac{1}{3})

f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right. becomes

f(x) = \left \{ {{1\ 9 \le x \le v^\frac{1}{3} - 9} \atop {0\ elsewhere}} \right.

The CDF is:

F(x) = \int\limits^{v^\frac{1}{3}}_9 1\  dx

Integrate

F(x) = [v]\limits^{v^\frac{1}{3}}_9

Expand

F(x) = v^\frac{1}{3} - 9

The density function of the volume F(v) is:

F(v) = F'(x)

Differentiate F(x) to give:

F(x) = v^\frac{1}{3} - 9

F'(x) = \frac{1}{3}v^{\frac{1}{3}-1}

F'(x) = \frac{1}{3}v^{-\frac{2}{3}}

F(v) = \frac{1}{3}v^{-\frac{2}{3}}

So:

f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.

8 0
2 years ago
The ratio of girls to boys at a movie is 5 : 4. If there are 12 boys​, how many girls are at the​ movie?
dalvyx [7]

Answer:

12/5 is 2.4 so

9 girls I think.

Step-by-step explanation:

8 0
2 years ago
Find the quotient. 8,489÷9
eimsori [14]
The answer is 943.2.
4 0
2 years ago
Read 2 more answers
What scale factor was applied to the first rectangle to get the result image?
sleet_krkn [62]
I dont know what the images are but scale factor is <span>is a number which </span>scales<span>, or multiplies, some quantity. Technically it is the number you have to multiply on each side that will get you the sides on the smaller or larger rectangle!!!

I hope it helps!!!
- Amana</span>
8 0
2 years ago
Read 2 more answers
Let the number of chocolate chips in a certain type of cookie have a Poisson distribution. We want the probability that a cookie
ludmilkaskok [199]

Answer:

\lambda \geq 6.63835

Step-by-step explanation:

The Poisson Distribution is "a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event".

Let X the random variable that represent the number of chocolate chips in a certain type of cookie. We know that X \sim Poisson(\lambda)

The probability mass function for the random variable is given by:

f(x)=\frac{e^{-\lambda} \lambda^x}{x!} , x=0,1,2,3,4,...

And f(x)=0 for other case.

For this distribution the expected value is the same parameter \lambda

E(X)=\mu =\lambda

On this case we are interested on the probability of having at least two chocolate chips, and using the complement rule we have this:

P(X\geq 2)=1-P(X

Using the pmf we can find the individual probabilities like this:

P(X=0)=\frac{e^{-\lambda} \lambda^0}{0!}=e^{-\lambda}

P(X=1)=\frac{e^{-\lambda} \lambda^1}{1!}=\lambda e^{-\lambda}

And replacing we have this:

P(X\geq 2)=1-[P(X=0)+P(X=1)]=1-[e^{-\lambda} +\lambda e^{-\lambda}[]

P(X\geq 2)=1-e^{-\lambda}(1+\lambda)

And we want this probability that at least of 99%, so we can set upt the following inequality:

P(X\geq 2)=1-e^{-\lambda}(1+\lambda)\geq 0.99

And now we can solve for \lambda

0.01 \geq e^{-\lambda}(1+\lambda)

Applying natural log on both sides we have:

ln(0.01) \geq ln(e^{-\lambda}+ln(1+\lambda)

ln(0.01) \geq -\lambda+ln(1+\lambda)

\lambda-ln(1+\lambda)+ln(0.01) \geq 0

Thats a no linear equation but if we use a numerical method like the Newthon raphson Method or the Jacobi method we find a good point of estimate for the solution.

Using the Newthon Raphson method, we apply this formula:

x_{n+1}=x_n -\frac{f(x_n)}{f'(x_n)}

Where :

f(x_n)=\lambda -ln(1+\lambda)+ln(0.01)

f'(x_n)=1-\frac{1}{1+\lambda}

Iterating as shown on the figure attached we find a final solution given by:

\lambda \geq 6.63835

4 0
2 years ago
Other questions:
  • Really need this one ASAP please I need to pass my class!!!
    6·1 answer
  • Which equation can be used to find the side lengths if the longest side measures 6.2cm?
    11·1 answer
  • in a poll 303 students voted . nominee d received 2/3 of the votes how many votes did nominee d receive​
    10·1 answer
  • A traveling with thrill rides charges $9 for admission plus $1.50 for each ride you take. If you pay $19.50 total, how many ride
    8·1 answer
  • Ms. Holmstrom set up a math problem to find out how much money her class spends for lunches at the cafeteria for over a 2-day pe
    6·1 answer
  • ABCD is a trapezoid. segment AB = 1 cm and segment CD = 5 cm, and the area = 7.5 cm2. What is the altitude of the trapezoid?
    15·2 answers
  • 15 less than x is 40. Determine the value of x.
    8·1 answer
  • Mike and eat 21 hot dogs in 6 mi uses. She wants to know how many minutes it would take to eat 35 hotdogs if she can keep up the
    13·2 answers
  • Someone please help ME I WILL MARK YOU BRAINLIEST
    9·2 answers
  • Collect info on minimum and maximum temperature if 7 consecutive days in creative manner
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!