He put iron with sulfur and oxygen and it had a few more errors and iron is a metal the other two are nonmetals
<u>Answer:</u> The correct answer is Option 4.
<u>Explanation:</u>
There are three sub-atomic particles present in an atom. They are: electrons, protons and neutrons.
Protons constitute in each and every atom.
The charge on proton is of equal magnitude as that of electron but having opposite sign. Proton carry a positive charge and electron carry a negative charge.
Protons and neutrons, both determine the mass of an atom.
Mass of 1 proton = 1.007276 u
Mass of 1 neutron = 1.008664 u
Mass of 1 electron = 0.00054858 u
Mass of proton is almost same as that of neutron but is more than the mass of electron.
Hence, the correct answer is Option 4.
Answer:
Force of attraction = 35.96
N
Explanation:
Given: charge on anion = -2
Charge on cation = +2
Distance = 1 nm =
m
To calculate: Force of attraction.
Solution: The force of attraction is calculated by using equation,
---(1)
where, q represents the charge and the subscripts 1 and 2 represents cation and anion.
k = 
F = force of attraction
r = distance between ions.
Substituting all the values in the equation (1) the equation becomes

Force of attraction = 35.96
N
1) Answer is: c) The reaction will proceed right.
Balanced chemical reaction: N₂(g) + 3H₂(g) ⇄ 2NH₃(g) ΔH = +92 kJ.
Reducing the volume of the system increase the partial pressures of the products and reactants.
With a pressure increase due to a decrease in volume, the side of the equilibrium with fewer moles is more favorable, there are 4 moles at the left side (three moles of hydrogen and one mole of nitrogen) and 2 moles (ammonia) at the right side of the reaction.
2) Answer is: d) The partial pressure of ammonia will increase.
This reaction is endothermic (enthalpy is higher than zero), which means that heat is added.
According to Le Chatelier's principle when the reaction is endothermic heat is included as a reactant and when the temperature increased, the heat of the system increase, so the system consume some of that heat by shifting the equilibrium to the right, producing more ammonia.
A pan on the stove getting hot, because the pan is conducting the heat from the stove.