Answer:
E(X) = 44.5
E(S2) =  б^2 = 212.25
Step-by-step explanation:
Given:
- The possible value of x are: 25,40,65 with probabilities 0.2,0.5,0.3, respectively
Solution:
- There could be nine possible cases for the joint probability distribution.
                           [  x_1 ; x_2 ; p ( x_1 , x_2 ) = p ( x_1 )*p ( x_2 ) ]
         x_bar = (x_1 + x_2)/2  ,   s^2 = ( x_1 - x_bar )^2 + ( x_2 - x_bar )^2
- Now for all 9 possible cases we have:
  x_1 = 25 ; x = 25 ; p ( x_1 , x_2 ) = 0.04 ;  x_bar = 25 ; s^2 = 0
  x_1 = 25 ; x = 40 ; p ( x_1 , x_2 ) = 0.1 ;  x_bar = 32.5 ; s^2 = 112.5
  x_1 = 25 ; x = 65 ; p ( x_1 , x_2 ) = 0.06 ;  x_bar = 45 ; s^2 = 800
  x_1 = 40 ; x = 25 ; p ( x_1 , x_2 ) = 0.1 ;  x_bar = 32.5 ; s^2 = 112.5
  x_1 = 40 ; x = 40 ; p ( x_1 , x_2 ) = 0.25 ;  x_bar = 40 ; s^2 = 0
  x_1 = 40 ; x = 65 ; p ( x_1 , x_2 ) = 0.15 ;  x_bar = 52.5 ; s^2 = 312.5
  x_1 = 65 ; x = 25 ; p ( x_1 , x_2 ) = 0.06 ;  x_bar = 45 ; s^2 = 800
  x_1 = 65 ; x = 40 ; p ( x_1 , x_2 ) = 0.15 ;  x_bar = 52.5 ; s^2 = 312.5
  x_1 = 65 ; x = 65 ; p ( x_1 , x_2 ) = 0.09 ;  x_bar = 65 ; s^2 = 0
- The probability distribution of  x_bar:
  x_bar  =       25          32.5         40          45           52.5            65
  P ( x )  =       0.04       0.20       0.25        0.12         0.30           0.09     
- Expected value of x_bar:
 E ( x_bar) = sum ( x_bar*p ( x ) )
                  = 25*(0.04)+32.5*(0.02)+40*(0.25)+45*(0.12)+52.5*(0.3)+65*(0.09)
                  = 1 + 6.5 + 10 + 5.4 + 15.75 + 5.85
                  = 44.5
- The population mean is given by:
    u = E(X) = sum ( x* P(x) ) 
       = 25*0.2 + 40*0.5 + 65*0.3
       = 44.5        
- The probability distribution of  s
^2:
         s^2  =            0                112.5                 312.5                   800
  P ( s^2 )  =          0.38             0.20                 0.30                    0.12
           
- Expected value of s^2:
 E ( s^2 ) = sum ( s^2*p ( s^2 ) )
               = 0*(0.38) + 112.5*(0.02) + 312.5*(0.30) + 800*(0.12)
               = 212.25
- The population standard deviation is given by:
    б^2 = E(X^2) -  [E(X)]^2
           = 25^2*0.2 + 40^2*0.5 + 65^2*0.3 - 44.5^2
           = 2192.5 - 1980.25
           = 212.25
- Hence, E(S2) =  б^2 = 212.25