Answer:
E(X) = 44.5
E(S2) = б^2 = 212.25
Step-by-step explanation:
Given:
- The possible value of x are: 25,40,65 with probabilities 0.2,0.5,0.3, respectively
Solution:
- There could be nine possible cases for the joint probability distribution.
[ x_1 ; x_2 ; p ( x_1 , x_2 ) = p ( x_1 )*p ( x_2 ) ]
x_bar = (x_1 + x_2)/2 , s^2 = ( x_1 - x_bar )^2 + ( x_2 - x_bar )^2
- Now for all 9 possible cases we have:
x_1 = 25 ; x = 25 ; p ( x_1 , x_2 ) = 0.04 ; x_bar = 25 ; s^2 = 0
x_1 = 25 ; x = 40 ; p ( x_1 , x_2 ) = 0.1 ; x_bar = 32.5 ; s^2 = 112.5
x_1 = 25 ; x = 65 ; p ( x_1 , x_2 ) = 0.06 ; x_bar = 45 ; s^2 = 800
x_1 = 40 ; x = 25 ; p ( x_1 , x_2 ) = 0.1 ; x_bar = 32.5 ; s^2 = 112.5
x_1 = 40 ; x = 40 ; p ( x_1 , x_2 ) = 0.25 ; x_bar = 40 ; s^2 = 0
x_1 = 40 ; x = 65 ; p ( x_1 , x_2 ) = 0.15 ; x_bar = 52.5 ; s^2 = 312.5
x_1 = 65 ; x = 25 ; p ( x_1 , x_2 ) = 0.06 ; x_bar = 45 ; s^2 = 800
x_1 = 65 ; x = 40 ; p ( x_1 , x_2 ) = 0.15 ; x_bar = 52.5 ; s^2 = 312.5
x_1 = 65 ; x = 65 ; p ( x_1 , x_2 ) = 0.09 ; x_bar = 65 ; s^2 = 0
- The probability distribution of x_bar:
x_bar = 25 32.5 40 45 52.5 65
P ( x ) = 0.04 0.20 0.25 0.12 0.30 0.09
- Expected value of x_bar:
E ( x_bar) = sum ( x_bar*p ( x ) )
= 25*(0.04)+32.5*(0.02)+40*(0.25)+45*(0.12)+52.5*(0.3)+65*(0.09)
= 1 + 6.5 + 10 + 5.4 + 15.75 + 5.85
= 44.5
- The population mean is given by:
u = E(X) = sum ( x* P(x) )
= 25*0.2 + 40*0.5 + 65*0.3
= 44.5
- The probability distribution of s
^2:
s^2 = 0 112.5 312.5 800
P ( s^2 ) = 0.38 0.20 0.30 0.12
- Expected value of s^2:
E ( s^2 ) = sum ( s^2*p ( s^2 ) )
= 0*(0.38) + 112.5*(0.02) + 312.5*(0.30) + 800*(0.12)
= 212.25
- The population standard deviation is given by:
б^2 = E(X^2) - [E(X)]^2
= 25^2*0.2 + 40^2*0.5 + 65^2*0.3 - 44.5^2
= 2192.5 - 1980.25
= 212.25
- Hence, E(S2) = б^2 = 212.25