I'm pretty sure it is C....
Answer:
hope this helps
Step-by-step explanation:
Answer:
H
Step-by-step explanation:
educated guess
Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
Answer:
x = 10°
y = 25°
Step-by-step explanation:
3x = 5x - 20 because they are alternate interior angles
subtract 5x from each side of the equation:
-2x = -20
Divide both sides by -2:
x = 10°
The sum of the interior angles of any triangle = 180°
2y + 4Y + (5x - 20) = 180°
combine like terms:
6y + 5x - 20 = 180°
add 20 to each side:
6y + 5x = 200°
substitute for x:
6y + 5(10) = 200°
subtract 50 from each side:
6y = 150°
divide both sides by 6:
y = 25°