Okay so you take the 12 feet I'm pretty sure you multiply 12 and 30 and then that's one of your answers and then the 12 and a 75 you must put those to together and that's an answer and you subtract your 12 x 30 and you're 12 x 75 and that's how you get your answer I am pretty sure that's how you and that's how you get your answer I am pretty sure that's how you do it
Answer:
4 , 2, 8, 4 ..............
Answer:
200,000
Step-by-step explanation:
Answer:
The answers are;
m = 9, e = 9
Step-by-step explanation:
The question relates to right triangles with special properties;
The given parameters of the given right triangles are;
The measure of an interior angle of the triangle = 45°
The length of the given leg length of the triangle = (9·√2)/2
The length of the other leg length of the triangle = n
The length of the hypotenuse side = m
A right triangle with one of the measures of the interior angles equal to 45° is a special triangle that has both leg lengths of the triangle equal
Therefore;
The length of the other leg of the right triangle = n = The length of the given leg of the triangle = (9·√2)/2
∴ n = (9·√2)/2
n = (e·√f)/g
Therefore, by comparison, we have;
e = 9, f = 2, and g = 2
By Pythagoras's theorem, we have;
m = √(n² + ((9×√2)/2)² = √((9×√2)/2)² + ((9×√2)/2)²) = √(81/2 + 81/2) = √81 = 9
m = 9.
Complete Question:
Emily and Zach have two different polynomials to multiply: Polynomial product A: (4x2 – 4x)(x2 – 4) Polynomial product B: (x2 + x – 2)(4x2 – 8x) They are trying to determine if the products of the two polynomials are the same. But they disagree about how to solve this problem.
Answer:

Step-by-step explanation:
<em>See comment for complete question</em>
Given


Required
Determine how they can show if the products are the same or not
To do this, we simply factorize each polynomial
For, Polynomial A: We have:

Factor out 4x

Apply difference of two squares on x^2 - 4

For, Polynomial B: We have:

Expand x^2 + x - 2

Factorize:

Factor out x + 2

Factor out 4x

Rearrange

The simplified expressions are:
and

Hence, both polynomials are equal
