Answer:
It is 8n, because there is no greater term that is the factor of both 32n2 and 56n.
Step-by-step explanation:
The greatest common factor of the two expression is the term 8n.
It is the highest factor of both expressions that will divide them.
Given:
32n² 56n
Factor them:
2n(16n 28)
4n(8n 14)
8n(4n 7n) - Beyond this, no common factor can divide them both.
Therefore 8n is the greatest common factor of the two.
Answer:
1. Degree = 1, monomial
2. Degree = 2, monomial
3. degree = 2, trinomial
4. Degree = 2, binomial
5. Degree = 2, binomial
Step-by-step explanation:
Typically if it is a linear function then it doesn't matter. However if it is a quadratic, cubic, and so on and so forth....(

) you may want to used the distance formula if you are not given any other points (with the exception of the vertex, asymptote or roots... etc).
Step-by-step explanation:
I don't really understand. Comment the question without "lesson/session/cancel/done" bc it's ALL confusing
Expanding brackets is just your book's way of saying to use the distributive property and then simplify to solve each equation.
I'll show the work for a and b and then the answers for the rest.
a.
4(g + 5) - 4g
Multiply each part inside the parentheses by 4
4g + 4(5) - 4g
4g + 20 - 4g
Now combine like terms to simplify the equation. In this case, the 4g and - 4g cancel each other out.
4g - 4g + 20
0 + 20
20
20 is your answer.
b.
6(p + 4) + 2(p - 12)
Multiply each part of the first set of parentheses by 6 and the second set by 2
6p + 6(4) + 2p + 2(- 12)
6p + 24 + 2p - 24
Combine like terms
6p + 2p + 24 - 24
8p + 0
8p
8p is your answer
c. 6z
d. 3a + 8
e. 8a + 16 which simplifies 8(a + 2)
f. 32w + 16 which simplifies 16(2w + 1)