The original square has the area (8 in)^2 = 64 in^2.
If we mult. this area by 36, we get the area of a larger square 2304 in^2.
The new side length is sqrt(2304 in^2), or 48. In other words, the original square has side length 8 in, but the 'new' square has side length 48 in.
Let
b-----------> the length side of the square box
h------------> the height of the box
SA---------> surface area of the box
we know that
[volume of the box]=b²*h
volume=256 in³
b²*h=256-------> h=256/b²-----> equation 1
surface area of the box=area of the base+perimeter of base*height
area of the base=b²
perimeter of the base=4*b
surface area=b²+(4*b)*h------> SA=b²+4*b*h-----> equation 2
substitute equation 1 in equation 2
SA=b²+4*b*[256/b²]-----> SA=b²+1024/b-----> SA=(b³+1024)/b
the answer is
the formula of the volume of the box is V=b²*h-----> 256=b²*h
the formula of the surface area of the box are
SA=b²+4*b*h
SA=(b³+1024)/b
Step-by-step explanation:
80:100=x:20
x=80×20/100=16