Answer:
On Monday the temperature was 35 - 4 = 31°. On Tuesday, it was 31 + 2 = 33° and on Wednesday it was 33 - 5 = 28° F.
Answer:
Step-by-step explanation:
- is the application of probability theory, a branch of mathematics, to statistics, as opposed to techniques for collecting statistical data.
- the study and manipulation of data, including ways to gather, review, analyze, and draw conclusions from data.
Answer: 
Step-by-step explanation:
By definition the domain of an inverse function
is the range of f(x) and the range of the inverse function is equal to the domain of the principal function f(x).
If you have a function
, then to find the inverse function, follow these steps:
1. Make 


2. Solve for the variable "x":

3. Exchange the variable "x" with the variable "y":

4. Exchange "y" with
. Then the inverse function is:

General equation of parabola: y-k = a(x-h)^2
Here the vertex is at (0,0), so we have y-0 = a(x-0)^2, or y = ax^2
All we have to do now is to find the value of the coefficient a.
(1,2) is on the curve. Therefore, 2 = a(1)^2, or 2 = a(1), or a = 2.
The equation of this parabola is y = 2x^2.
Answer:
a) Null and alternative hypothesis:

b) A Type I error is made when a true null hypothesis is rejected. In this case, it would mean a conclusion that the proportion is significantly bigger than 10%, when in fact it is not.
c) The consequences would be that they would be more optimistic than they should about the result of the investment, expecting a proportion of students that is bigger than the true population proportion.
d) A Type II error is made when a false null hypothesis is failed to be rejected. This would mean that, although the proportion is significantly bigger than 10%, there is no enough evidence and it is concluded erroneously that the proportion is not significantly bigger than 10%
e) The consequences would be that the investment may not be made, even when the results would have been more positive than expected from the conclusion of the hypothesis test.
Step-by-step explanation:
a) The hypothesis should be carried to test if the proportion of students that would eat there at least once a week is significantly higher than 10%.
Then, the alternative or spectulative hypothesis will state this claim: that the population proportion is significantly bigger than 10%.
On the contrary, the null hypothesis will state that this proportion is not significantly higher than 10%.
This can be written as:
