It’s hard to read take a little easier pic
Answer:
Number of $1 coins are 25 and number of 50 cent coins are 30.
Step-by-step explanation:
Let's set up the equations.
Let there are x number of $1 coins
There are y number of 50 cent coins
So, x+y =55
1 x+0.50 y =40
Solve the equations for x and y.
Solve the first equation for y.
y=55-x
Substitute y as 55-x into the second equation.
1 x+0.50(55-x)=40
Solve the equation for 'x'.
Distribute the 0.50 to get rid the ( ).
1 x+27.5-0.50 x= 40
Combine like terms
0.50 x +27.5=40
Subtract both sides 27.5
0.50 x =12.5
Divide both sides by 0.50
x=25
Now, plug in x as 25
y=55-25
y=30
So, number of $1 coins are 25 and number of 50 cent coins are 30.
Answer:
the volume of the cone would be approximately 490.09 m^3.
Step-by-step explanation:
The volume of a cone is pir^2h/3
So it would be pi*6^2*13/3
=pi*36*13/3
=pi*156
=490.09
Therefore, the volume of the cone would be approximately 490.09 m^3.
I hope this helped and have a good rest of your day!
Answer:
<h2> </h2><h2>

</h2>
Step-by-step explanation:
<h3><em><u>Question</u></em><em><u>:</u></em><em><u>-</u></em></h3>
- To find the Binomial theorem form of
<h3><em><u>As</u></em><em><u> </u></em><em><u>we</u></em><em><u> </u></em><em><u>know</u></em><em><u>:</u></em><em><u>-</u></em></h3>
<em>As</em><em> </em><em>in</em><em> </em><em>Bin</em><em>omial</em><em> </em><em>theorem</em><em> </em><em>:</em><em>-</em>
<h3><em><u>Solution</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em></h3>

- <em>Hence</em><em>,</em><em> </em><em>on</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>Binomial</em><em> </em><em>theorem</em><em>,</em><em> </em>

- <em>On</em><em> </em><em>formatting</em><em> </em>

- <em>On</em><em> </em><em>further</em><em> </em><em>formatting</em><em>.</em><em> </em>

<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>required</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em>

-2(x - 5) + 4(9 + x)
-2x + 10 + 36 + 4x
=2x + 46