1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
5

Suppose (theta sign) is an angle in standard position whose terminal side lies in the given quadrant. For these functions, find

the exact values of the remaining five trigonometric funtctions of (theta)
sin(theta)=-4/5; Quadrant 4

tan(theta)=2; Quadrant 1
Mathematics
1 answer:
spin [16.1K]3 years ago
6 0
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2288989

_______________


A)  \mathsf{sin\,\theta=-\,\dfrac{4}{5}\qquad\qquad\theta \in 4th~quadrant.}

\mathsf{5\,sin\,\theta=-4\qquad\quad(i)}


•  Finding \mathsf{cos\,\theta:}

Square both sides of \mathsf{(i):}

\mathsf{(5\,sin^2\,\theta)=4^2}\\\\
\mathsf{5^2\,sin^2\,\theta=4^2}\\\\
\mathsf{25\,sin^2\,\theta=16\qquad\qquad(but~sin^2\,\theta=1-cos^2\,\theta)}\\\\
\mathsf{25\cdot (1-cos^2\,\theta)=16}\\\\
\mathsf{25-25\,cos^2\,\theta=16}

\mathsf{25-16=25\,cos^2\,\theta}\\\\
\mathsf{9=25\,cos^2\,\theta}\\\\
\mathsf{cos^2\,\theta=\dfrac{9}{25}}\\\\\\
\mathsf{cos\,\theta=\pm\,\sqrt{\dfrac{9}{25}}}\\\\\\
\mathsf{cos\,\theta=\pm\,\sqrt{\dfrac{3^2}{5^2}}}\\\\\\
\mathsf{cos\,\theta=\pm\,\dfrac{3}{5}}


But \mathsf{cos\,\theta} is also negative, because \mathsf{\theta} lies in the 4th quadrant. So,

\mathsf{cos\,\theta=-\,\dfrac{3}{5}\qquad\quad\checkmark}


•  Finding \mathsf{tan\,\theta:}

\mathsf{tan\,\theta=\dfrac{sin\,\theta}{cos\,\theta}}\\\\\\
\mathsf{tan\,\theta=\dfrac{-\,\frac{4}{5}}{-\,\frac{3}{5}}}\\\\\\
\mathsf{tan\,\theta=-\,\dfrac{4}{\diagup\hspace{-6}5}\cdot \left(\!-\,\dfrac{\diagup\hspace{-6}5}{3}\right)}\\\\\\
\mathsf{tan\,\theta=\dfrac{4}{3}\qquad\quad\checkmark}


•  Finding \mathsf{cot\,\theta:}

\mathsf{cot\,\theta=\dfrac{1}{tan\,\theta}}\\\\\\
\mathsf{cot\,\theta=\dfrac{1}{~\frac{4}{3}~}}\\\\\\
\mathsf{cot\,\theta=\dfrac{3}{4}\qquad\quad\checkmark}


•  Finding \mathsf{sec\,\theta:}

\mathsf{sec\,\theta=\dfrac{1}{cos\,\theta}}\\\\\\
\mathsf{sec\,\theta=\dfrac{1}{-\,\frac{3}{5}}}\\\\\\
\mathsf{sec\,\theta=-\,\dfrac{5}{3}\qquad\quad\checkmark}


•  Finding \mathsf{csc\,\theta:}

\mathsf{csc\,\theta=\dfrac{1}{sin\,\theta}}\\\\\\
\mathsf{csc\,\theta=\dfrac{1}{-\,\frac{4}{5}}}\\\\\\
\mathsf{csc\,\theta=-\,\dfrac{5}{4}\qquad\quad\checkmark}

________


B)  \mathsf{tan\,\theta=2\qquad\qquad\theta \in 1st~quadrant.}

\mathsf{\dfrac{sin\,\theta}{cos\,\theta}=2}\\\\\\
\mathsf{sin\,\theta=2\,cos\,\theta\qquad\quad(ii)}


•  Finding \mathsf{sin\,\theta:}

Square both sides of \mathsf{(ii):}

\mathsf{(sin\,\theta)^2=(2\,cos\,\theta)^2}\\\\
\mathsf{sin^2\,\theta=2^2\,cos^2\,\theta}\\\\
\mathsf{sin^2\,\theta=4\,cos^2\,\theta\qquad\qquad(but~cos^2\,\theta=1-sin^2\,\theta)}\\\\
\mathsf{sin^2\,\theta=4\cdot (1-sin^2\,\theta)}\\\\
\mathsf{sin^2\,\theta=4-4\,sin^2\,\theta}

\mathsf{sin^2\,\theta+4\,sin^2\,\theta=4}\\\\
\mathsf{5\,sin^2\,\theta=4}\\\\
\mathsf{sin^2\,\theta=\dfrac{4}{5}}\\\\
\mathsf{sin\,\theta=\pm\,\sqrt{\dfrac{4}{5}}}\\\\\\
\mathsf{sin\,\theta=\pm\,\dfrac{2}{\sqrt{5}}}


But sine is positive because \theta is a 1st quadrant angle:

\mathsf{sin\,\theta=\dfrac{2}{\sqrt{5}}\qquad\quad\checkmark}


•  Finding \mathsf{cos\,\theta:}

\mathsf{sin\,\theta=2\,cos\,\theta}\\\\
\mathsf{cos\,\theta=\dfrac{1}{2}\,sin\,\theta}\\\\\\
\mathsf{cos\,\theta=\dfrac{1}{\diagup\hspace{-6}2}\cdot \dfrac{\diagup\hspace{-6}2}{\sqrt{5}}}\\\\\\
\mathsf{cos\,\theta=\dfrac{1}{\sqrt{5}}\qquad\quad\checkmark}


•  Finding \mathsf{cot\,\theta:}

\mathsf{cot\,\theta=\dfrac{1}{tan\,\theta}}\\\\\\
\mathsf{cot\,\theta=\dfrac{1}{2}}\qquad\quad\checkmark}


•  Finding \mathsf{sec\,\theta:}

\mathsf{sec\,\theta=\dfrac{1}{cos\,\theta}}\\\\\\ \mathsf{sec\,\theta=\dfrac{1}{~\frac{1}{\sqrt{5}}~}}\\\\\\ \mathsf{sec\,\theta=\sqrt{5}\qquad\quad\checkmark}


•  Finding \mathsf{csc\,\theta:}

\mathsf{csc\,\theta=\dfrac{1}{sin\,\theta}}\\\\\\
\mathsf{csc\,\theta=\dfrac{1}{~\frac{2}{\sqrt{5}}~}}\\\\\\
\mathsf{csc\,\theta=\dfrac{\sqrt{5}}{2}\qquad\quad\checkmark}


I hope this helps. =)


Tags:  <em>trigonometric trig function sine cosine tangent cotangent secant cosecant sin cos tan cot sec csc trigonometry</em>

You might be interested in
Graph the equation and identify the​ y-intercept.
Hunter-Best [27]

We need the graphing tool.

4 0
3 years ago
Help pleaseee i cant
maw [93]

how are you today  

Step-by-step explanation:

8 0
3 years ago
Can somebody help me with this math problem?
ankoles [38]
She needs 0.1 because 4x4 is 16. :)
7 0
4 years ago
A fishbowl has a capacity of 192 fluid ounces. How many quarts is that?
DENIUS [597]

Answer:

hope this helps

Step-by-step explanation:

192 fl oz. = 6 quarts

to get this you divide the fluid ounces by 32.

7 0
3 years ago
Boris invest $2200 at a rate of 3% per year simple intrest how much intrest did boris earn in 10 years
ankoles [38]
Here you go, hope it helps:)

7 0
3 years ago
Other questions:
  • Find the distance between (-2,0) and (4,-6)​
    5·1 answer
  • Sin A Cos B - Cos A Sun B =
    10·1 answer
  • The output from a statistical computer program indicates that the mean and standard deviation of a data set consisting of 200 me
    12·1 answer
  • Please help with number 1! Thanks
    14·1 answer
  • A city council is deciding whether or not to spend additional money to reduce the amount of traffic. The council decides that it
    6·1 answer
  • A race car can go around the track 48 times in 8 minutes how many times can the race car go around per minute
    14·1 answer
  • Nevermind I don't need help
    5·2 answers
  • Find the length, x, of the third side of the triangle.​
    5·2 answers
  • Which expression is equivalent to 4(2x + 1) - (-6x)?<br> 14x+4<br> 8x-2<br> 2x+4<br> -14x-4
    14·1 answer
  • A+0=0+a=0 is true except for all teal numbers except 0 true or false
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!