Answer:
![\begin{array}{cc}\text{Mathematical expression}&\text{Translation}\\ \\xy&\text{The product of two numbers}\\ \\\dfrac{x}{y}&x\text{ divided by }y\\ \\x-y&x\text{ minus }y\\ \\x+y&\text{the sum of }x\text{ and }y\\ \\y-x&x\text{ subtracted from }y\\ \\y:x&y\text{ divided by } x\\ \\x+y=6&\text{the sum of two numbers is 6}\\ \\xy=6&\text{the product of two numbers is 6}\\ \\6x=y&\text{6 times a number equals }y\\ \\y=x-6&\text{6 less than a number is }y\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcc%7D%5Ctext%7BMathematical%20expression%7D%26%5Ctext%7BTranslation%7D%5C%5C%20%5C%5Cxy%26%5Ctext%7BThe%20product%20of%20two%20numbers%7D%5C%5C%20%5C%5C%5Cdfrac%7Bx%7D%7By%7D%26x%5Ctext%7B%20divided%20by%20%7Dy%5C%5C%20%5C%5Cx-y%26x%5Ctext%7B%20minus%20%7Dy%5C%5C%20%5C%5Cx%2By%26%5Ctext%7Bthe%20sum%20of%20%7Dx%5Ctext%7B%20and%20%7Dy%5C%5C%20%5C%5Cy-x%26x%5Ctext%7B%20subtracted%20from%20%7Dy%5C%5C%20%5C%5Cy%3Ax%26y%5Ctext%7B%20divided%20by%20%7D%20x%5C%5C%20%5C%5Cx%2By%3D6%26%5Ctext%7Bthe%20sum%20of%20two%20numbers%20is%206%7D%5C%5C%20%5C%5Cxy%3D6%26%5Ctext%7Bthe%20product%20of%20two%20numbers%20is%206%7D%5C%5C%20%5C%5C6x%3Dy%26%5Ctext%7B6%20times%20a%20number%20equals%20%7Dy%5C%5C%20%5C%5Cy%3Dx-6%26%5Ctext%7B6%20less%20than%20a%20number%20is%20%7Dy%5Cend%7Barray%7D)
Step-by-step explanation:
![\begin{array}{cc}\text{Mathematical expression}&\text{Translation}\\ \\xy&\text{The product of two numbers}\\ \\\dfrac{x}{y}&x\text{ divided by }y\\ \\x-y&x\text{ minus }y\\ \\x+y&\text{the sum of }x\text{ and }y\\ \\y-x&x\text{ subtracted from }y\\ \\y:x&y\text{ divided by } x\\ \\x+y=6&\text{the sum of two numbers is 6}\\ \\xy=6&\text{the product of two numbers is 6}\\ \\6x=y&\text{6 times a number equals }y\\ \\y=x-6&\text{6 less than a number is }y\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcc%7D%5Ctext%7BMathematical%20expression%7D%26%5Ctext%7BTranslation%7D%5C%5C%20%5C%5Cxy%26%5Ctext%7BThe%20product%20of%20two%20numbers%7D%5C%5C%20%5C%5C%5Cdfrac%7Bx%7D%7By%7D%26x%5Ctext%7B%20divided%20by%20%7Dy%5C%5C%20%5C%5Cx-y%26x%5Ctext%7B%20minus%20%7Dy%5C%5C%20%5C%5Cx%2By%26%5Ctext%7Bthe%20sum%20of%20%7Dx%5Ctext%7B%20and%20%7Dy%5C%5C%20%5C%5Cy-x%26x%5Ctext%7B%20subtracted%20from%20%7Dy%5C%5C%20%5C%5Cy%3Ax%26y%5Ctext%7B%20divided%20by%20%7D%20x%5C%5C%20%5C%5Cx%2By%3D6%26%5Ctext%7Bthe%20sum%20of%20two%20numbers%20is%206%7D%5C%5C%20%5C%5Cxy%3D6%26%5Ctext%7Bthe%20product%20of%20two%20numbers%20is%206%7D%5C%5C%20%5C%5C6x%3Dy%26%5Ctext%7B6%20times%20a%20number%20equals%20%7Dy%5C%5C%20%5C%5Cy%3Dx-6%26%5Ctext%7B6%20less%20than%20a%20number%20is%20%7Dy%5Cend%7Barray%7D)
The measures of the angles are given to be x and y. Since y is 65 degrees less than the measure of angle x then, it can also be expressed as x - 65. The sum of the angles x and y should be 180 degrees as they are supplementary angles,
x + y = 180
x + (x - 65) = 180
The value of x is 122.5 and that of y is 57.5. Therefore, the measures of the angles are 122.5 and 57.5.
Answer:
c
Step-by-step explanation:
because are of trapizium =( a+b/2) × h
Answer:
ok
Step-by-step explanation:
alright