Answer:
The p-value of the test statistic from the standard normal table is 0.0017 which is less than the level of significance therefore, the null hypothesis would be rejected and it can be concluded that there is sufficient evidence to support the claim that less than 20% of the pumps are inaccurate.
Step-by-step explanation:
Here, 1304 gas pumps were not pumping accurately and 5689 pumps were accurate.
x = 1304, n = 1304 + 5689 = 6993
The level of significance = 0.01
The sample proportion of pump which is not pumping accurately can be calculated as,
The claim is that the industry representative less than 20% of the pumps are inaccurate.
The hypothesis can be constructed as:
H0: p = 0.20
H1: p < 0.20
The one-sample proportion Z test will be used.
The test statistic value can be obtained as:

You add of the sides to get the perimeter.. 9 plus 9 is 18 and 5 plus 5 is 10. 10 plus 18 of 28. The perimeter of ABCD is 28.
I hope this helps.
To calculate the present value we shall proceed as follows:
from the present value table, the percentage corresponding to discount factor of 0.7008 in 5 years is 7%
therefore using the formula:
FV=PV(1+r/100)^n
where:
FV=$1000
PV=?
r=7%
hence:
1000=PV(1+7/100)^5
PV=1000/(1+7/100)^5
PV=712.986
Given:
In parallelogram ABCD, two of its vertices are A(-4,0) and B(0,3).
To find:
The equation that represents a line that contain CD.
Solution:
We have,
A(-4,0) and B(0,3)
Slope of AB is



The slope of line AB is
.
Opposite sides of a parallelogram are parallel and slopes of parallel lines are equal.
In parallelogram ABCD, AB and CD are opposite sides. So, their slopes must be equal.
Slope of line AB = Slope of line CD = 
The slope intercept form of a line is

Where, m is slope and b is y-intercept.
Slope of line CD is
, it means the line must be of the form

Coefficient of x is
only in option a.
Therefore, the correct option is a.
The volume of a sphere:

r - the radius
The diameter is twice the radius.
![d=36 \ in \\ r=\frac{36}{2} \ in = 18 \ in \\ \\ V=\frac{4}{3} \pi \times 18^3=\frac{4}{3}\pi \times 5832=\frac{23328}{3} \pi=7776\pi \ [in^3]](https://tex.z-dn.net/?f=d%3D36%20%5C%20in%20%5C%5C%0Ar%3D%5Cfrac%7B36%7D%7B2%7D%20%5C%20in%20%3D%2018%20%5C%20in%20%5C%5C%20%5C%5C%0AV%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%5Ctimes%2018%5E3%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%5Ctimes%205832%3D%5Cfrac%7B23328%7D%7B3%7D%20%5Cpi%3D7776%5Cpi%20%5C%20%5Bin%5E3%5D)
The exact volume of the sphere is 7776π in³.