1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
3 years ago
9

What is the importance of the x- y- Cartesian coordinate system in motion of an object in two dimensions?

Physics
1 answer:
ArbitrLikvidat [17]3 years ago
4 0

Answer:

To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.

Explanation:

Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the "average velocity" of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as:

{\displaystyle {\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.}{\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.

The average velocity is always less than or equal to the average speed of an object.

In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.

{\displaystyle {\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,}{\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,

where we may identify

{\displaystyle \Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt}\Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt

and

{\displaystyle \Delta t=t_{1}-t_{0}.}\Delta t=t_{1}-t_{0}.

Instantaneous velocity

{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}{\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.

From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, x. In calculus terms, the integral of the velocity function v(t) is the displacement function x(t).

{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}

Since the derivative of the position with respect to time gives the change in position (in metres) divided by the change in time (in seconds), velocity is measured in metres per second (m/s). Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment.

Relationship to acceleration

Although velocity is defined as the rate of change of position,

{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.}{\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.

From there, we can obtain an expression for velocity as the area under an a(t) acceleration vs. time graph. As above, this is done using the concept of the integral:

{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}

Constant acceleration

{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}{\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t

with v as the velocity at time t and u as the velocity at time t = 0. By combining this equation with the suvat equation x = ut + at2/2, i

{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}}{\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}.

{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}

{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}(2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}

{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}\therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})

You might be interested in
Suppose a 48-N sled is resting on packed snow. The coefficient of kinetic friction is 0.10. If a person weighing 660 N sits on t
Annette [7]

Assume the snow is uniform, and horizontal.

Given:

coefficient of kinetic friction = 0.10 = muK

weight of sled = 48 N

weight of rider = 660 N

normal force on of sled with rider = 48+660 N = 708 N = N

Force required to maintain a uniform speed

= coefficient of kinetic friction * normal force

= muK * N

= 0.10 * 708 N

=70.8 N


Note: it takes more than 70.8 N to start the sled in motion, because static friction is in general greater than kinetic friction.


8 0
3 years ago
What is measurement ?...​
mariarad [96]

Answer:

the size, length, or amount of something, as established by measuring.

3 0
2 years ago
Read 2 more answers
Simplify completely: -3(4-9)+6-2(-8+5)
Elis [28]

Answer:

29

Explanation:

-3(4-9)+6-2(-8+5)

-12+27+6+18-10

29

5 0
3 years ago
Read 2 more answers
Would a wire carrying more electrons transfer more energy than a wire carrying fewer electrons? Explain why or why not.​
Burka [1]

Answer:

no

Explanation:

abcdefghijklmnopqrstuvwxyz

5 0
3 years ago
Read 2 more answers
How many times can mechanical energy become chemical energy
maria [59]

Answer:

Chemical energy, Energy stored in the bonds of chemical compounds. Chemical energy may be released during a chemical reaction, often in the form of heat; such reactions are called exothermic.

3 0
3 years ago
Other questions:
  • A flat sheet is in the shape of a rectangle with sides of lengths 0.400 m and 0.600 m. The sheet is immersed in a uniform electr
    6·1 answer
  • What happens to potential energy that is not completely converted to kinetic
    13·1 answer
  • "a needle can be made to "float" on the surface tension of water. what causes this surface tension to form"
    10·1 answer
  • Which of the following is an example of an incline plane? a) lever b)gear c)pulley d)screw
    11·2 answers
  • What nutrient is easiest to be broken down and absorb energy ?
    5·2 answers
  • The barrier to C-C bond rotation in iodoethane is 13 kJ/mol. What energy can you assign to an H-I eclipsing interaction?
    5·1 answer
  • The force of gravity between two objects is directly proportional to which of the following?
    14·1 answer
  • What is Hooke's law? Also, what does it say about how elastic materials respond to force? Explain.
    7·1 answer
  • The molecules of a substance in a particular state of matter move freely with random motion. The average speed of the molecules
    7·1 answer
  • Initial State: An 8-month old child is at rest at the bottom of a staircase.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!