so the investigator found the skid marks were 75 feet long hmmm what speed will that be?
![s=\sqrt{30fd}~~ \begin{cases} f=\stackrel{friction}{factor}\\ d=\stackrel{skid}{feet}\\[-0.5em] \hrulefill\\ f=\stackrel{dry~day}{0.7}\\ d=75 \end{cases}\implies s=\sqrt{30(0.7)(75)}\implies s\approx 39.69~\frac{m}{h}](https://tex.z-dn.net/?f=s%3D%5Csqrt%7B30fd%7D~~%20%5Cbegin%7Bcases%7D%20f%3D%5Cstackrel%7Bfriction%7D%7Bfactor%7D%5C%5C%20d%3D%5Cstackrel%7Bskid%7D%7Bfeet%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20f%3D%5Cstackrel%7Bdry~day%7D%7B0.7%7D%5C%5C%20d%3D75%20%5Cend%7Bcases%7D%5Cimplies%20s%3D%5Csqrt%7B30%280.7%29%2875%29%7D%5Cimplies%20s%5Capprox%2039.69~%5Cfrac%7Bm%7D%7Bh%7D)
nope, the analysis shows that Charlie was going faster than 35 m/h.
now, assuming Charlie was indeed going at 35 m/h, then his skid marks would have been
![s=\sqrt{30fd}~~ \begin{cases} f=\stackrel{friction}{factor}\\ d=\stackrel{skid}{feet}\\[-0.5em] \hrulefill\\ f=\stackrel{dry~day}{0.7}\\ s=35 \end{cases}\implies 35=\sqrt{30(0.7)d} \\\\\\ 35^2=30(0.7)d\implies \cfrac{35^2}{30(0.7)}=d\implies 58~ft\approx d](https://tex.z-dn.net/?f=s%3D%5Csqrt%7B30fd%7D~~%20%5Cbegin%7Bcases%7D%20f%3D%5Cstackrel%7Bfriction%7D%7Bfactor%7D%5C%5C%20d%3D%5Cstackrel%7Bskid%7D%7Bfeet%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20f%3D%5Cstackrel%7Bdry~day%7D%7B0.7%7D%5C%5C%20s%3D35%20%5Cend%7Bcases%7D%5Cimplies%2035%3D%5Csqrt%7B30%280.7%29d%7D%20%5C%5C%5C%5C%5C%5C%2035%5E2%3D30%280.7%29d%5Cimplies%20%5Ccfrac%7B35%5E2%7D%7B30%280.7%29%7D%3Dd%5Cimplies%2058~ft%5Capprox%20d)
Answer:
B
Step-by-step explanation:
formula s =4*pi*r^2
s=4(3.14)(3^2)
s = 12.56(9)s= 113.04
Multiply 2 by 10, divide the answer by 5, and add 3 to the final answer
Answer:
Step-by-step explanation:
1. 6w*2v + 3*6w= 12vw + 18w
2. 7(-5v) - 7(8)= -35v - 56
3. 2x*(-2x) - 3(2x) = -4x^2 - 6x
4. -4*v - 4(1)= -4v - 4
5. 2n*6n + 2n + 2*6n + 2= 12n^2 + 14n + 2
6. 4n(2n) + 4n(6) + 2n + 6= 8n^2 + 26n + 6
7. x(6x) - 2x - 18x + 6 = 6x^2 - 20x + 6
8. 8p(6p) + 8p(2) - 2(6p) - 4 = 48p^2 + 16p - 12p - 4= 48p^2 + 4p - 4
9. 6p(5p) - 6p(8) + 8(5p) - 40= 30p^2 - 48p + 40p - 40= 30p^2 - 8p - 40
10. 3m(8m) + 3m(7) - 8m - 7 = 24m^2 + 21m - 8m - 7= 24m^2 + 13m - 7
11. 2a(8a) - 2a(5) - 8a + 5 = 16a^2 - 10a - 8a + 5 = 16a^2 - 18a + 5
12. 5n(5n) - 5n(5) + 6(5n) - 6(5)= 25n^2 - 25n + 30n - 30= 25n^2 + 5n - 30
13. 4p(4p) - 4p - 4p + 1 = 16p^2 - 8p +
14. 7x(5x) + 7x(6) -6(5x) - 6(6)= 35x^2 + 42x - 30x - 36= 35x^2 + 12x - 36