I hope it helps you a little
Answer:
= 4a + 3c + 13
Step-by-step explanation:
(9+4a)+(4+3c)
= 9 + 4a + 4 + 3c
= 4a + 3c + 13
Answer:
V=3053.6
Step-by-step explanation:
1² + 3² + 4² + 4(n - 1)² = ¹/₃n(2n - 1)(2n + 1)
1² + 3² + 4² + (2n - 2)² = ¹/₃n(2n - 1)(2n + 1)
1 + 9 + 16 + (2n - 2)(2n - 2) = ¹/₃n(2n(2n + 1) - 1(2n + 1))
10 + 16 + (2n(2n - 2) - 2(2n - 2)) = ¹/₃n(2n(2n) + 2n(1) - 1(2n) - 1(1) 16 + (2n(2n) - 2n(2) - 2(2n) + 2(2)) = ¹/₃n(4n² + 2n - 2n - 1)
26 + (4n² - 4n - 4n + 4) = ¹/₃n(4n² - 1)
26 + (4n² - 8n + 4) = ¹/₃n(4n² - 1)
26 + 4n² - 8n + 4 = ¹/₃n(4n²) - ¹/₃n(1)
4n² - 8n + 4 + 26 = 1¹/₃n³ - ¹/₃n
4n² - 8n + 30 = 1¹/₃n³ - ¹/₃n
+ ¹/₃n + ¹/₃n
4n² - 7²/₃n + 30 = 1¹/₃n³
-1¹/₃n³ + 4n² - 7²/₃n + 30 = 0
-3(-1¹/₃n³ + 4n² - 7²/₃n + 30) = -3(0)
-3(-1¹/₃n³) - 3(4n²) - 3(-7²/₃n) - 3(30) = 0
4n³ - 12n² + 23n - 90 = 0
A relation is given below. {(0, 0), (2, 0.5), (4, 1), (3, 1.5), (4, 2), (5, 1.5), (6, 8)} Which ordered pair can be removed to m
dedylja [7]
Answer:
The first one is 4,1 and then every input must be paired with exactly one output
Step-by-step explanation: