1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
3 years ago
12

What us 1/10 of 3,000

Mathematics
1 answer:
s344n2d4d5 [400]3 years ago
5 0

1/10 of 3,000 is 300. Just divide by 10 to get the answer

You might be interested in
Two circles with different radii have chords AB and CD, such that AB is congruent to CD. Are the arcs intersected by these chord
emmainna [20.7K]

The arcs intersected by these chords are not congruent.

Given that two circles with different radii have chords AB and CD, such that AB is congruent to CD.

Let r₁ and r₂ be the radii of two different circles with centers O and O' respectively.

Assuming that the each of the ∠АОВ  and ∠CO'D is less than or equal to π.

Then, we have isosceles triangle AOB and CO'D such that,

AO = OB = r₁,

CO' = O'D = r₂,

Let us assume that r₁< r₂;

We can see that arc(AB) intersected by AB is greater than arc(CD), intersected by the chord CD;

arc(AB) > arc(CD)      .......(1)

Indeed,

arc(AB) = r₁ angle (AOB)

arc(CD) = r₂ angle (CO'D)

So, we have to prove that ;

∠AOB >∠CO'D       ......(2)

Since each angle is less than or equal to π, and so

∠AOB/2  and ∠CO'D/2 is less than or equal to π

it suffices to show that :

tan(AOB/2) >tan(CO'D/2) ......(3)

From triangle AOB :

tan(AOB/2) = AB/(2*r₁)

tan(CO'D/2) = CD/(2*r₂)

Since AB = CD and r₁ < r₂ (As obtained from the result of (3) ), therefore, arc(AB) > arc(CD).

Hence, for two circles with different radii have chords AB and CD, such that AB is congruent to CD but the arcs intersected by these chords are not congruent.

Learn more about congruent from here brainly.com/question/1675117

#SPJ1

6 0
2 years ago
The angles of a triangle are 80º, 2x + 2º, and 5xº. What is the value of x?
Gekata [30.6K]
Since the sum of the angles of a triangle = 180°

Then  <span>80º + (2x + 2)º + 5xº  = 180</span>°
                          82° + (7x)° = 180°
                                    (7x)° = 180° - 82°
                                        x   =  98° ÷ 7
                                    ∴  x   = 14
7 0
4 years ago
What vaulue of K anwsers the qestion.....K -4 = 1/256 please hurry its the last one i cant fail :(
iogann1982 [59]

K=4+1/256

If this is a multiple choice question, please provide the choices ;)

4 0
3 years ago
I need help with these as well
Mkey [24]
The answer to c. Is 8t+12g
4 0
3 years ago
The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as t
skad [1K]

Answer:

a) 0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

b) 0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

c) 0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

d) None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as the population mean and assume the population standard deviation of preparation fees is $100.

This means that \mu = 273, \sigma = 100

A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 30, s = \frac{100}{\sqrt{30}}

The probability is the p-value of Z when X = 273 + 16 = 289 subtracted by the p-value of Z when X = 273 - 16 = 257. So

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{30}}}

Z = 0.88

Z = 0.88 has a p-value of 0.8106

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{30}}}

Z = -0.88

Z = -0.88 has a p-value of 0.1894

0.8106 - 0.1894 = 0.6212

0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 50, s = \frac{100}{\sqrt{50}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{50}}}

Z = 1.13

Z = 1.13 has a p-value of 0.8708

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{50}}}

Z = -1.13

Z = -1.13 has a p-value of 0.1292

0.8708 - 0.1292 = 0.7416

0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 100, s = \frac{100}{\sqrt{100}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{100}}}

Z = 1.6

Z = 1.6 has a p-value of 0.9452

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{100}}}

Z = -1.6

Z = -1.6 has a p-value of 0.0648

0.9452 - 0.0648 =

0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?

None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

6 0
2 years ago
Other questions:
  • What is the midpoint of ab with endpoints A(3,2) and B (8,14
    10·2 answers
  • <img src="https://tex.z-dn.net/?f=%20%7B4%7D%5E%7B3%7D%20" id="TexFormula1" title=" {4}^{3} " alt=" {4}^{3} " align="absmiddle"
    11·2 answers
  • If you repeat the perpendicular line segment construction twice using paper folding, you can construct:
    8·2 answers
  • The equation h = -16t^2 + 32t + 9 gives the height of a ball, h, in feet above the ground, at t seconds after the ball is thrown
    15·1 answer
  • To play basketball with her friends, Evangeline needs to pump air in her ball, which is completely deflated. Before inflating it
    7·2 answers
  • 0.506 rounded to the nearest hundredth
    6·2 answers
  • How was your day? answer to get easy points :))
    10·2 answers
  • Ted ran three miles in 2.8 minutes. At this rate, how long would it take him to run 33.3 miles?​
    9·1 answer
  • ILL MARK U BRAINLIEST!!
    15·2 answers
  • Logan invested $180 in an account paying an interest rate of 2,6% compounded
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!