Answer:
A) 68.33%
B) (234, 298)
Step-by-step explanation:
We have that the mean is 266 days (m) and the standard deviation is 16 days (sd), so we are asked:
A. P (250 x < 282)
P ((x1 - m) / sd < x < (x2 - m) / sd)
P ((250 - 266) / 16 < x < (282 - 266) / 16)
P (- 1 < z < 1)
P (z < 1) - P (-1 < z)
If we look in the normal distribution table we have to:
P (-1 < z) = 0.1587
P (z < 1) = 0.8413
replacing
0.8413 - 0.1587 = 0.6833
The percentage of pregnancies last between 250 and 282 days is 68.33%
B. We apply the experimental formula of 68-95-99.7
For middle 95% it is:
(m - 2 * sd, m + 2 * sd)
Thus,
m - 2 * sd <x <m + 2 * sd
we replace
266 - 2 * 16 <x <266 + 2 * 16
234 <x <298
That is, the interval would be (234, 298)
Answer:
The correct equation is 8.7 + b = 54.6
Step-by-step explanation:
because it is given that measure of side a is 8.7cm, in all other equations the values of a is different.
Answer:
1/6
Step-by-step explanation:
The rise is 1 and the run is 6
<h3>
Answer: A. 9</h3>
=====================================================
Explanation:
Draw in the segments AO and OC.
Triangle ABO is congruent to triangle CBO. We can prove this through the use of the HL theorem. HL stands for hypotenuse leg.
Since the triangles are congruent, this means the corresponding pieces AB and BC are the same length.
Then we can say:
AB+BC = AC .... segment addition postulate
AB+AB = AC .... plug in BC = AB
2*AB = AC
2*AB = 18
AB = 18/2 .... divide both sides by 2
AB = 9
In short, the chord AC is bisected by the perpendicular radius drawn in the diagram. So all we do is cut AC = 18 in half to get AB = 9.