Answer: Lattice parameter, a = (4R)/(√3)
Step-by-step explanation:
The typical arrangement of atoms in a unit cell of BCC is shown in the first attachment.
The second attachment shows how to obtain the value of the diagonal of the base of the unit cell.
If the diagonal of the base of the unit cell = x
(a^2) + (a^2) = (x^2)
x = a(√2)
Then, diagonal across the unit cell (a cube) makes a right angled triangle with one side of the unit cell & the diagonal on the base of the unit cell.
Let the diagonal across the cube be y
Pythagoras theorem,
(a^2) + ((a(√2))^2) = (y^2)
(a^2) + 2(a^2) = (y^2) = 3(a^2)
y = a√3
But the diagonal through the cube = 4R (evident from the image in the first attachment)
y = 4R = a√3
a = (4R)/(√3)
QED!!!
We need to see the "given system".
Answer:
a. [ 0.454,0.51]
b. 599.472 ~ 600
Step-by-step explanation:
a)
Confidence Interval For Proportion
CI = p ± Z a/2 Sqrt(p*(1-p)/n)))
x = Mean
n = Sample Size
a = 1 - (Confidence Level/100)
Za/2 = Z-table value
CI = Confidence Interval
Mean(x)=410
Sample Size(n)=850
Sample proportion = x/n =0.482
Confidence Interval = [ 0.482 ±Z a/2 ( Sqrt ( 0.482*0.518) /850)]
= [ 0.482 - 1.645* Sqrt(0) , 0.482 + 1.65* Sqrt(0) ]
= [ 0.454,0.51]
b)
Compute Sample Size ( n ) = n=(Z/E)^2*p*(1-p)
Z a/2 at 0.05 is = 1.96
Samle Proportion = 0.482
ME = 0.04
n = ( 1.96 / 0.04 )^2 * 0.482*0.518
= 599.472 ~ 600
Answer:
3161.8 cubic foot
Step-by-step explanation:
V = 1/3BH = 1/3πr²H
V = 1/3 x 3.14 x 16² x 11.8 = 3161.77
Answer:
Wow Ashley I see you keep looking for the answers.
Step-by-step explanation:
This is the second time I have seen you looking for the answers on the internet, I am now thinking about giving you a zero for this week's homework. Please refrain from copying because I do not want to give you a bad score.